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alloc Computing allocations

Description

Computing (capital) allocations.

Usage

## For elliptical distributions under certain assumptions
alloc_ellip(total, loc, scale)

## Nonparametrically
conditioning(x, level, risk.measure = "VaR_np", ...)
alloc_np(x, level, risk.measure = "VaR_np", include.conditional = FALSE, ...)



alloc 3

Arguments

total total to be allocated (typically the risk measure of the sum of the underlying loss
random variables).

loc location vector of the elliptical distribution of the loss random vector.

scale scale (covariance) matrix of the elliptical distribution of the loss random vector.

x (n, d)-matrix containing n iid d-dimensional losses.

level either one or two confidence level(s) for risk.measure; in the former case the
upper bound on the conditioning region is determined by confidence level 1.

risk.measure character string or function specifying the risk measure to be computed on
the row sums of x based on the given level(s) in order to determine the condi-
tioning region.

include.conditional

logical indicating whether the computed sub-sample of x is to be returned, too.

... additional arguments passed to risk.measure.

Details

The result of alloc_ellip() for loc = 0 can be found in McNeil et al. (2015, Corollary 8.43).
Otherwise, McNeil et al. (2015, Theorem 8.28 (1)) can be used to derive the result.

Value

d-vector of allocated amounts (the allocation) according to the Euler principle under the assumption
that the underlying loss random vector follows a d-dimensional elliptical distribution with location
vector loc (mu in the reference) and scale matrix scale (Σ in the reference, a covariance matrix)
and that the risk measure is law-invariant, positive-homogeneous and translation invariant.

Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Examples

### Ellipitical case ###########################################################

## Construct a covariance matrix
sig <- 1:3 # standard deviations
library(copula) # for p2P() here
P <- p2P(c(-0.5, 0.3, 0.5)) # (3, 3) correlation matrix
Sigma <- P * sig %*% t(sig) # corresponding covariance matrix
stopifnot(all.equal(cov2cor(Sigma), P)) # sanity check

## Compute the allocation of 1.2 for a joint loss L ~ E_3(0, Sigma, psi)
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AC <- alloc_ellip(1.2, loc = 0, scale = Sigma) # allocated amounts
stopifnot(all.equal(sum(AC), 1.2)) # sanity check
## Be careful to check whether the aforementioned assumptions hold.

### Nonparametrically ##########################################################

## Generate data
set.seed(271)
X <- qt(rCopula(1e5, copula = gumbelCopula(2, dim = 5)), df = 3.5)

## Estimate an allocation via MC based on a sub-sample whose row sums have a
## nonparametric VaR with confidence level in ...
alloc_np(X, level = 0.9) # ... (0.9, 1]
CA <- alloc_np(X, level = c(0.9, 0.95)) # ... in (0.9, 0.95]
CA. <- alloc_np(X, level = c(0.9, 0.95), risk.measure = VaR_np) # providing a function
stopifnot(identical(CA, CA.))

Black_Scholes Black–Scholes formula and the Greeks

Description

Compute the Black–Scholes formula and the Greeks.

Usage

Black_Scholes(t, S, r, sigma, K, T, type = c("call", "put"))
Black_Scholes_Greeks(t, S, r, sigma, K, T, type = c("call", "put"))

Arguments

t initial or current time t (in years).

S stock price at time t.

r risk-free annual interest rate.

sigma annual volatility (standard deviation).

K strike.

T maturity (in years).

type character string indicating whether a call (the default) or a put option is con-
sidered.

Details

Note again that t is time in years. In the context of McNeil et al. (2015, Chapter 9), this is
τt = t/250.



Brownian 5

Value

Black_Scholes() returns the value of a European-style call or put option (depending on the chosen
type) on a non-dividend paying stock.

Black_Scholes_Greeks() returns the first-order derivatives delta, theta, rho, vega and the second-
order derivatives gamma, vanna and vomma (depending on the chosen type) in this order.

Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts,
Techniques, Tools. Princeton University Press.

Brownian Brownian and Related Motions

Description

Simulate paths of dependent Brownian motions, geometric Brownian motions and Brownian bridges
based on given increment copula samples. And extract copula increments from paths of dependent
Brownian motions and geometric Brownian motions.

Usage

rBrownian(N, t, d = 1, U = matrix(runif(N * n * d), ncol = d),
drift = 0, vola = 1, type = c("BM", "GBM", "BB"), init = 1)

deBrowning(x, t, drift = 0, vola = 1, type = c("BM", "GBM"))

Arguments

N number N of paths to simulate (positive integer).

x n+1-vector containing one path of the specified stochastic process or (n+1, d)-
matrix containing one path of the specified d stochastic processes or (N,n +
1, d)-array containing N paths of the specified d stochastic processes.

t n + 1-vector of the form (t0, . . . , tn) with 0 = t0 < · · · < tn containing the
time points where the stochastic processes are considered.

d number d of stochastic processes to simulate (positive integer).

U (N · n, d)-matrix of copula realizations to be converted to the joint increments
of the stochastic processes.

drift d-vector or number (then recycled to a d-vector) of drifts (typically denoted by
µ). Note that risk-neutral drifts are r − σ2/2, where r is the risk-free interest
rate and σ the volatility.
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vola d-vector or number (then recycled to a d-vector) of volatilities (typically denoted
by σ).

type character string indicating whether a Brownian motion ("BM"), geometric Brow-
nian motion ("GBM") or Brownian bridge ("BB") is to be considered.

init d-vector or number (then recycled to a d-vector) of initial values (typically stock
prices at time 0) for type = "GBM".

Value

rBrownian() returns an (N,n + 1, d)-array containing the N paths of the specified d stochastic
processes simulated at the n+ 1 time points (t0 = 0, t1, . . . , tn).

deBrowning() returns an (N,n, d)-array containing the N paths of the copula increments of the d
stochastic processes over the n+ 1 time points (t0 = 0, t1, . . . , tn).

Author(s)

Marius Hofert

Examples

## Setup
d <- 3 # dimension
library(copula)
tcop <- tCopula(iTau(tCopula(), tau = 0.5), dim = d, df = 4) # t_4 copula
vola <- seq(0.05, 0.20, length.out = d) # volatilities sigma
r <- 0.01 # risk-free interest rate
drift <- r - vola^2/2 # marginal drifts
init <- seq(10, 100, length.out = d) # initial stock prices
N <- 100 # number of replications
n <- 25 # number of time intervals
t <- 0:n/n # time points 0 = t_0 < ... < t_n

## Simulate N paths of a cross-sectionally dependent d-dimensional
## (geometric) Brownian motion ((G)BM) over n time steps
set.seed(271)
U <- rCopula(N * n, copula = tcop) # for dependent increments
X <- rBrownian(N, t = t, d = d, U = U, drift = drift, vola = vola) # BM
S <- rBrownian(N, t = t, d = d, U = U, drift = drift, vola = vola,

type = "GBM", init = init) # GBM
stopifnot(dim(X) == c(N, n+1, d), dim(S) == c(N, n+1, d))

## DeBrowning
Z.X <- deBrowning(X, t = t, drift = drift, vola = vola) # BM
Z.S <- deBrowning(S, t = t, drift = drift, vola = vola, type = "GBM") # GBM
stopifnot(dim(Z.X) == c(N, n, d), dim(Z.S) == c(N, n, d))
## Note that for BMs, one loses one observation as X_{t_0} = 0 (or some other
## fixed value, so there is no random increment there that can be deBrowned.

## If we map the increments back to their copula sample, do we indeed
## see the copula samples again?
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U.Z.X <- pnorm(Z.X) # map to copula sample
U.Z.S <- pnorm(Z.S) # map to copula sample
stopifnot(all.equal(U.Z.X, U.Z.S)) # sanity check
## Visual check
pairs(U.Z.X[,1,], gap = 0) # check at the first time point of the BM
pairs(U.Z.X[,n,], gap = 0) # check at the last time point of the BM
pairs(U.Z.S[,1,], gap = 0) # check at the first time point of the GBM
pairs(U.Z.S[,n,], gap = 0) # check at the last time point of the GBM
## Numerical check
## First convert the (N * n, d)-matrix U to an (N, n, d)-array but in
## the right way (array(U, dim = c(N, n, d)) would use the U's in the
## wrong order)
U. <- aperm(array(U, dim = c(n, N, d)), perm = c(2,1,3))
## Now compare
stopifnot(all.equal(U.Z.X, U., check.attributes = FALSE))
stopifnot(all.equal(U.Z.S, U., check.attributes = FALSE))

## Generate dependent GBM sample paths with quasi-random numbers
library(qrng)
set.seed(271)
U.. <- cCopula(to_array(sobol(N, d = d * n, randomize = "digital.shift"), f = n),

copula = tcop, inverse = TRUE)
S. <- rBrownian(N, t = t, d = d, U = U.., drift = drift, vola = vola,

type = "GBM", init = init)
pairs(S [,2,], gap = 0) # pseudo-samples at t_1
pairs(S.[,2,], gap = 0) # quasi-samples at t_1
pairs(S [,n+1,], gap = 0) # pseudo-samples at t_n
pairs(S.[,n+1,], gap = 0) # quasi-samples at t_n

## Generate paths from a Brownian bridge
B <- rBrownian(N, t = t, type = "BB")
plot(NA, xlim = 0:1, ylim = range(B),

xlab = "Time t", ylab = expression("Brownian bridge path"~(B[t])))
for(i in 1:N)

lines(t, B[i,,], col = adjustcolor("black", alpha.f = 25/N))

catch Catching Results, Warnings and Errors Simultaneously

Description

Catches results, warnings and errors.

Usage

catch(expr)
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Arguments

expr expression to be evaluated, typically a function call.

Details

This function is particularly useful for large(r) simulation studies to not fail until finished.

Value

list with components:

value value of expr or NULL in case of an error.
warning warning message (see simpleWarning or warning()) or NULL in case of no

warning.
error error message (see simpleError or stop()) or NULL in case of no error.

Author(s)

Marius Hofert (based on doCallWE() and tryCatch.W.E() in the R package simsalapar).

Examples

catch(log(2))
catch(log(-1))
catch(log("a"))

fit_ARMA_GARCH Fitting ARMA-GARCH Processes

Description

Fail-safe componentwise fitting of univariate ARMA-GARCH processes.

Usage

fit_ARMA_GARCH(x, ugarchspec.list = ugarchspec(), solver = "hybrid",
verbose = FALSE, ...)

Arguments

x matrix-like data structure, possibly an xts object.
ugarchspec.list

object of class uGARCHspec (as returned by ugarchspec()) or a list of such.
In case of a list, its length has to be equal to the number of columns of x.
ugarchspec.list provides the ARMA-GARCH specifications for each of the
time series (columns of x).

solver string indicating the solver used; see ?ugarchfit.
verbose logical indicating whether verbose output is given.
... additional arguments passed to the underlying ugarchfit().
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Value

If x consists of one column only (e.g. a vector), ARMA_GARCH() returns the fitted object; otherwise
it returns a list of such.

Author(s)

Marius Hofert

See Also

fit_GARCH_11() for fast(er) and numerically more robust fitting of GARCH(1,1) processes.

Examples

library(rugarch)
library(copula)

## Read the data, build -log-returns
data(SMI.12) # Swiss Market Index data
stocks <- c("CSGN", "BAER", "UBSN", "SREN", "ZURN") # components we work with
x <- SMI.12[, stocks]
X <- -returns(x)
n <- nrow(X)
d <- ncol(X)

## Fit ARMA-GARCH models to the -log-returns
## Note: - Our choice here is purely for demonstration purposes.
## The models are not necessarily adequate
## - The sample size n is *too* small here for properly capturing GARCH effects.
## Again, this is only for demonstration purposes here.
uspec <- c(rep(list(ugarchspec(distribution.model = "std")), d-2), # ARMA(1,1)-GARCH(1,1)

list(ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(2,2)),
distribution.model = "std")),

list(ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(2,1)),
mean.model = list(armaOrder = c(1,2), include.mean = TRUE),
distribution.model = "std")))

system.time(fitAG <- fit_ARMA_GARCH(X, ugarchspec.list = uspec))
str(fitAG, max.level = 1) # list with components fit, warning, error
## Now access the list to check

## Not run:
## Pick out the standardized residuals, plot them and fit a t copula to them
## Note: ugarchsim() needs the residuals to be standardized; working with
## standardize = FALSE still requires to simulate them from the
## respective standardized marginal distribution functions.
Z <- sapply(fitAG$fit, residuals, standardize = TRUE)
U <- pobs(Z)
pairs(U, gap = 0)
system.time(fitC <- fitCopula(tCopula(dim = d, dispstr = "un"), data = U,

method = "mpl"))

## Simulate (standardized) Z
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set.seed(271)
U. <- rCopula(n, fitC@copula) # simulate from the fitted copula
nu <- sapply(1:d, function(j) fitAG$fit[[j]]@fit$coef["shape"]) # extract (fitted) d.o.f. nu
Z. <- sapply(1:d, function(j) sqrt((nu[j]-2)/nu[j]) * qt(U.[,j], df = nu[j])) # Z

## Simulate from fitted model
X. <- sapply(1:d, function(j)

fitted(ugarchsim(fitAG$fit[[j]], n.sim = n, m.sim = 1, startMethod = "sample",
rseed = 271, custom.dist = list(name = "sample",

distfit = Z.[,j, drop = FALSE]))))

## Plots original vs simulated -log-returns
opar <- par(no.readonly = TRUE)
layout(matrix(1:(2*d), ncol = d)) # layout
ran <- range(X, X.)
for(j in 1:d) {

plot(X[,j], type = "l", ylim = ran, ylab = paste(stocks[j], "-log-returns"))
plot(X.[,j], type = "l", ylim = ran, ylab = "Simulated -log-returns")

}
par(opar)

## End(Not run)

fit_GARCH_11 Fast(er) and Numerically More Robust Fitting of GARCH(1,1) Pro-
cesses

Description

Fast(er) and numerically more robust fitting of GARCH(1,1) processes according to Zumbach
(2000).

Usage

fit_GARCH_11(x, init = NULL, sig2 = mean(x^2), delta = 1,
distr = c("norm", "st"), control = list(), ...)

tail_index_GARCH_11(innovations, alpha1, beta1,
interval = c(1e-6, 1e2), ...)

Arguments

x vector of length n containing the data (typically log-returns) to be fitted a GARCH(1,1)
to.

init vector of length 2 giving the initial values for the likelihood fitting. Note that
these are initial values for zcorr and zema as in Zumbach (2000).

sig2 annualized variance (third parameter of the reparameterization according to Zum-
bach (2000)).

delta unit of time (defaults to 1 meaning daily data; for yearly data, use 250).
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distr character string specifying the innovation distribution ("norm" for N(0,1) or
"st" for a standardized t distribution).

control see ?optim().

innovations random variates from the innovation distribution; for example, obtained via
rnorm() or rt(, df = nu) * sqrt((nu-2)/nu) where nu are the d.o.f. of the
t distribution.

alpha1 nonnegative GARCH(1,1) coefficient alpha[1] satisfying alpha[1] + beta[1] <
1.

beta1 nonnegative GARCH(1,1) coefficient beta[1] satisfying alpha[1]+ beta[1] < 1.

interval initial interval for computing the tail index; passed to the underlying uniroot().

... fit_GARCH_11(): additional arguments passed to the underlying optim().
tail_index_GARCH_11(): additional arguments passed to the underlying uniroot().

Value

fit_GARCH_11(): coef: estimated coefficients α0, α1, β1 and, if distr = "st" the estimated de-
grees of freedom.

logLik: maximized log-likelihood.
counts: number of calls to the objective function; see ?optim.
convergence: convergence code (’0’ indicates successful completion); see ?optim.
message: see ?optim.
sig.t: vector of length n giving the conditional volatility.
Z.t: vector of length n giving the standardized residuals.

tail_index_GARCH_11(): The tail index alpha estimated by Monte Carlo via McNeil et al. (2015,
p. 576), so the alpha which solves

E((α1Z
2 + β1)

α/2
) = 1

, where Z are the innovations. If no solution is found (e.g. if the objective function does not
have different sign at the endpoints of interval), NA is returned.

Author(s)

Marius Hofert

References

Zumbach, G. (2000). The pitfalls in fitting GARCH (1,1) processes. Advances in Quantitative Asset
Management 1, 179–200.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

See Also

fit_ARMA_GARCH() based on rugarch.
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Examples

### Example 1: N(0,1) innovations ##############################################

## Generate data from a GARCH(1,1) with N(0,1) innovations
library(rugarch)
uspec <- ugarchspec(variance.model = list(model = "sGARCH",

garchOrder = c(1, 1)),
distribution.model = "norm",
mean.model = list(armaOrder = c(0, 0)),
fixed.pars = list(mu = 0,

omega = 0.1, # alpha_0
alpha1 = 0.2, # alpha_1
beta1 = 0.3)) # beta_1

X <- ugarchpath(uspec, n.sim = 1e4, rseed = 271) # sample (set.seed() fails!)
X.t <- as.numeric(X@path$seriesSim) # actual path (X_t)

## Fitting via ugarchfit()
uspec. <- ugarchspec(variance.model = list(model = "sGARCH",

garchOrder = c(1, 1)),
distribution.model = "norm",
mean.model = list(armaOrder = c(0, 0)))

fit <- ugarchfit(uspec., data = X.t)
coef(fit) # fitted mu, alpha_0, alpha_1, beta_1
Z <- fit@fit$z # standardized residuals
stopifnot(all.equal(mean(Z), 0, tol = 1e-2),

all.equal(var(Z), 1, tol = 1e-3))

## Fitting via fit_GARCH_11()
fit. <- fit_GARCH_11(X.t)
fit.$coef # fitted alpha_0, alpha_1, beta_1
Z. <- fit.$Z.t # standardized residuals
stopifnot(all.equal(mean(Z.), 0, tol = 5e-3),

all.equal(var(Z.), 1, tol = 1e-3))

## Compare
stopifnot(all.equal(fit.$coef, coef(fit)[c("omega", "alpha1", "beta1")],

tol = 5e-3, check.attributes = FALSE)) # fitted coefficients
summary(Z. - Z) # standardized residuals

### Example 2: t_nu(0, (nu-2)/nu) innovations ##################################

## Generate data from a GARCH(1,1) with t_nu(0, (nu-2)/nu) innovations
uspec <- ugarchspec(variance.model = list(model = "sGARCH",

garchOrder = c(1, 1)),
distribution.model = "std",
mean.model = list(armaOrder = c(0, 0)),
fixed.pars = list(mu = 0,

omega = 0.1, # alpha_0
alpha1 = 0.2, # alpha_1
beta1 = 0.3, # beta_1
shape = 4)) # nu
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X <- ugarchpath(uspec, n.sim = 1e4, rseed = 271) # sample (set.seed() fails!)
X.t <- as.numeric(X@path$seriesSim) # actual path (X_t)

## Fitting via ugarchfit()
uspec. <- ugarchspec(variance.model = list(model = "sGARCH",

garchOrder = c(1, 1)),
distribution.model = "std",
mean.model = list(armaOrder = c(0, 0)))

fit <- ugarchfit(uspec., data = X.t)
coef(fit) # fitted mu, alpha_0, alpha_1, beta_1, nu
Z <- fit@fit$z # standardized residuals
stopifnot(all.equal(mean(Z), 0, tol = 1e-2),

all.equal(var(Z), 1, tol = 5e-2))

## Fitting via fit_GARCH_11()
fit. <- fit_GARCH_11(X.t, distr = "st")
c(fit.$coef, fit.$df) # fitted alpha_0, alpha_1, beta_1, nu
Z. <- fit.$Z.t # standardized residuals
stopifnot(all.equal(mean(Z.), 0, tol = 2e-2),

all.equal(var(Z.), 1, tol = 2e-2))

## Compare
fit.coef <- coef(fit)[c("omega", "alpha1", "beta1", "shape")]
fit..coef <- c(fit.$coef, fit.$df)
stopifnot(all.equal(fit.coef, fit..coef, tol = 7e-2, check.attributes = FALSE))
summary(Z. - Z) # standardized residuals

fit_GEV Parameter Estimators of the Generalized Extreme Value Distribution

Description

Quantile matching estimator, probability weighted moments estimator, log-likelihood and maximum-
likelihood estimator for the parameters of the generalized extreme value distribution (GEV).

Usage

fit_GEV_quantile(x, p = c(0.25, 0.5, 0.75), cutoff = 3)
fit_GEV_PWM(x)

logLik_GEV(param, x)
fit_GEV_MLE(x, init = c("shape0", "PWM", "quantile"),

estimate.cov = TRUE, control = list(), ...)

Arguments

x numeric vector of data. In the block maxima method, these are the block max-
ima.

p numeric(3) specifying the probabilities whose quantiles are matched.
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cutoff positive z after which exp(−z) is truncated to 0.

param numeric(3) containing the value of the shape ξ (a real), location µ (a real) and
scale σ (positive real) parameters of the GEV distribution in this order.

init character string specifying the method for computing initial values. Can also
be numeric(3) for directly providing ξ, µ, σ.

estimate.cov logical indicating whether the asymptotic covariance matrix of the parameter
estimators is to be estimated (inverse of observed Fisher information (negative
Hessian of log-likelihood evaluated at MLE)) and standard errors for the esti-
mators of ξ, µ, σ returned, too.

control list; passed to the underlying optim().

... additional arguments passed to the underlying optim().

Details

fit_GEV_quantile() matches the empirical p-quantiles.

fit_GEV_PWM() computes the probability weighted moments (PWM) estimator of Hosking et al.
(1985); see also Landwehr and Wallis (1979).

fit_GEV_MLE() uses, as default, the case ξ = 0 for computing initial values; this is actually a
small positive value since Nelder–Mead could fail otherwise. For the other available methods for
computing initial values, σ (obtained from the case ξ = 0) is doubled in order to guarantee a finite
log-likelihood at the initial values. After several experiments (see the source code), one can safely
say that finding initial values for fitting GEVs via MLE is non-trivial; see also the block maxima
method script about the Black Monday event on https://qrmtutorial.org.

Caution: See Coles (2001, p. 55) for how to interpret ξ ≤ −0.5; in particular, the standard asymp-
totic properties of the MLE do not apply.

Value

fit_GEV_quantile() and fit_GEV_PWM() return a numeric(3) giving the parameter estimates for
the GEV distribution.

logLik_GEV() computes the log-likelihood of the GEV distribution (-Inf if not admissible).

fit_GEV_MLE() returns the return object of optim() (by default, the return value value is the log-
likelihood) and, appended, the estimated asymptotic covariance matrix and standard errors of the
parameter estimators, if estimate.cov.

Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Hosking, J. R. M., Wallis, J. R. and Wood, E. F. (1985). Estimation of the Generalized Extreme-
Value Distribution by the Method of Probability-Weighted Moments. Technometrics 27(3), 251–
261.

https://qrmtutorial.org
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Landwehr, J. M. and Wallis, J. R. (1979). Probability Weighted Moments Compared With Some
Traditional Techniques in Estimating Gumbel Parameters and Quantiles. Water Resourches Re-
search 15(5), 1055–1064.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag.

Examples

## Simulate some data
xi <- 0.5
mu <- -2
sig <- 3
n <- 1000
set.seed(271)
X <- rGEV(n, shape = xi, loc = mu, scale = sig)

## Fitting via matching quantiles
(fit.q <- fit_GEV_quantile(X))
stopifnot(all.equal(fit.q[["shape"]], xi, tol = 0.12),

all.equal(fit.q[["loc"]], mu, tol = 0.12),
all.equal(fit.q[["scale"]], sig, tol = 0.005))

## Fitting via PWMs
(fit.PWM <- fit_GEV_PWM(X))
stopifnot(all.equal(fit.PWM[["shape"]], xi, tol = 0.16),

all.equal(fit.PWM[["loc"]], mu, tol = 0.15),
all.equal(fit.PWM[["scale"]], sig, tol = 0.08))

## Fitting via MLE
(fit.MLE <- fit_GEV_MLE(X))
(est <- fit.MLE$par) # estimates of xi, mu, sigma
stopifnot(all.equal(est[["shape"]], xi, tol = 0.07),

all.equal(est[["loc"]], mu, tol = 0.12),
all.equal(est[["scale"]], sig, tol = 0.06))

fit.MLE$SE # estimated asymp. variances of MLEs = std. errors of MLEs

## Plot the log-likelihood in the shape parameter xi for fixed
## location mu and scale sigma (fixed as generated)
xi. <- seq(-0.1, 0.8, length.out = 65)
logLik <- sapply(xi., function(xi..) logLik_GEV(c(xi.., mu, sig), x = X))
plot(xi., logLik, type = "l", xlab = expression(xi),

ylab = expression("GEV distribution log-likelihood for fixed"~mu~"and"~sigma))
## => Numerically quite challenging (for this seed!)

## Plot the profile likelihood for these xi's
## Note: As initial values for the nuisance parameters mu, sigma, we
## use their values in the case xi = 0 (for all fixed xi = xi.,
## in particular those xi != 0). Furthermore, for the given data X
## and xi = xi., we make sure the initial value for sigma is so large
## that the density is not 0 and thus the log-likelihood is finite.
pLL <- sapply(xi., function(xi..) {

scale.init <- sqrt(6 * var(X)) / pi
loc.init <- mean(X) - scale.init * 0.5772157
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while(!is.finite(logLik_GEV(c(xi.., loc.init, scale.init), x = X)) &&
is.finite(scale.init)) scale.init <- scale.init * 2

optim(c(loc.init, scale.init), fn = function(nuis)
logLik_GEV(c(xi.., nuis), x = X),

control = list(fnscale = -1))$value
})
plot(xi., pLL, type = "l", xlab = expression(xi),

ylab = "GEV distribution profile log-likelihood")

fit_GPD Parameter Estimators of the Generalized Pareto Distribution

Description

Method-of-moments estimator, probability weighted moments estimator, log-likelihood and maximum-
likelihood estimator for the parameters of the generalized Pareto distribution (GPD).

Usage

fit_GPD_MOM(x)
fit_GPD_PWM(x)

logLik_GPD(param, x)
fit_GPD_MLE(x, init = c("PWM", "MOM", "shape0"),

estimate.cov = TRUE, control = list(), ...)

Arguments

x numeric vector of data. In the peaks-over-threshold method, these are the ex-
cesses (exceedances minus threshold).

param numeric(2) containing the value of the shape ξ (a real) and scale β (positive
real) parameters of the GPD in this order.

init character string specifying the method for computing initial values. Can also
be numeric(2) for directly providing ξ and β.

estimate.cov logical indicating whether the asymptotic covariance matrix of the parameter
estimators is to be estimated (inverse of observed Fisher information (negative
Hessian of log-likelihood evaluated at MLE)) and standard errors for the esti-
mators of ξ and β returned, too.

control list; passed to the underlying optim().

... additional arguments passed to the underlying optim().
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Details

fit_GPD_MOM() computes the method-of-moments (MOM) estimator.

fit_GPD_PWM() computes the probability weighted moments (PWM) estimator of Hosking and
Wallis (1987); see also Landwehr et al. (1979).

fit_GPD_MLE() uses, as default, fit_GPD_PWM() for computing initial values. The former requires
the data x to be non-negative and adjusts β if ξ is negative, so that the log-likelihood at the initial
value should be finite.

Value

fit_GEV_MOM() and fit_GEV_PWM() return a numeric(3) giving the parameter estimates for the
GPD.

logLik_GPD() computes the log-likelihood of the GPD (-Inf if not admissible).

fit_GPD_MLE() returns the return object of optim() and, appended, the estimated asymptotic co-
variance matrix and standard errors of the parameter estimators, if estimate.cov.

Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Hosking, J. R. M. and Wallis, J. R. (1987). Parameter and Quantile Estimation for the Generalized
Pareto Distribution. Technometrics 29(3), 339–349.

Landwehr, J. M., Matalas, N. C. and Wallis, J. R. (1979). Estimation of Parameters and Quantiles
of Wakeby Distributions. Water Resourches Research 15(6), 1361–1379.

Examples

## Simulate some data
xi <- 0.5
beta <- 3
n <- 1000
set.seed(271)
X <- rGPD(n, shape = xi, scale = beta)

## Fitting via matching moments
(fit.MOM <- fit_GPD_MOM(X))
stopifnot(all.equal(fit.MOM[["shape"]], xi, tol = 0.52),

all.equal(fit.MOM[["scale"]], beta, tol = 0.24))

## Fitting via PWMs
(fit.PWM <- fit_GPD_PWM(X))
stopifnot(all.equal(fit.PWM[["shape"]], xi, tol = 0.2),

all.equal(fit.PWM[["scale"]], beta, tol = 0.12))
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## Fitting via MLE
(fit.MLE <- fit_GPD_MLE(X))
(est <- fit.MLE$par) # estimates of xi, mu, sigma
stopifnot(all.equal(est[["shape"]], xi, tol = 0.12),

all.equal(est[["scale"]], beta, tol = 0.11))
fit.MLE$SE # estimated asymp. variances of MLEs = std. errors of MLEs

## Plot the log-likelihood in the shape parameter xi for fixed
## scale beta (fixed as generated)
xi. <- seq(-0.1, 0.8, length.out = 65)
logLik <- sapply(xi., function(xi..) logLik_GPD(c(xi.., beta), x = X))
plot(xi., logLik, type = "l", xlab = expression(xi),

ylab = expression("GPD log-likelihood for fixed"~beta))

## Plot the profile likelihood for these xi's
## (with an initial interval for the nuisance parameter beta such that
## logLik_GPD() is finite)
pLL <- sapply(xi., function(xi..) {

## Choose beta interval for optimize()
int <- if(xi.. >= 0) {

## Method-of-Moment estimator
mu.hat <- mean(X)
sig2.hat <- var(X)
shape.hat <- (1-mu.hat^2/sig2.hat)/2
scale.hat <- mu.hat*(1-shape.hat)
## log-likelihood always fine for xi.. >= 0 for all beta
c(1e-8, 2 * scale.hat)

} else { # xi.. < 0
## Make sure logLik_GPD() is finite at endpoints of int
mx <- max(X)
-xi.. * mx * c(1.01, 100) # -xi * max(X) * scaling
## Note: for shapes xi.. closer to 0, the upper scaling factor
## needs to be chosen sufficiently large in order
## for optimize() to find an optimum (not just the
## upper end point). Try it with '2' instead of '100'.

}
## Optimization
optimize(function(nuis) logLik_GPD(c(xi.., nuis), x = X),

interval = int, maximum = TRUE)$maximum
})
plot(xi., pLL, type = "l", xlab = expression(xi),

ylab = "GPD profile log-likelihood")

get_data Tools for Getting and Working with Data

Description

Download (and possibly) merge data from freely available databases.
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Usage

get_data(x, from = NULL, to = NULL,
src = c("yahoo", "quandl", "oanda", "FRED", "google"),
FUN = NULL, verbose = TRUE, warn = TRUE, ...)

Arguments

x vector of ticker symbols (e.g. "^GSPC" if src = "yahoo" or "EUR/USD" if src =
"oanda").

from start date as a Date object or character string (in international date format "yyyy-mm-dd");
if NULL, the earliest date with available data is picked.

to end date as a Date object or character string (in international date format "yyyy-mm-dd");
if NULL, the last date with available data is picked.

src character string specifying the data source (e.g. "yahoo" for stocks or "oanda"
for FX data); see getSymbols() and Quandl().

FUN function to be applied to the data before being returned. This can be

the identity: if the data could not be retrieved (and is thus replaced by NA);
the given FUN: if FUN has been provided;
a useful default: if FUN = NULL; the default uses the adjusted close price Ad()

if src = "yahoo", the close price Cl() if src = "google" and the identity
otherwise.

verbose logical indicating whether progress monitoring should be done.

warn logical indicating whether a warning is given showing the error message when
fetching x fails.

... additional arguments passed to the underlying getSymbols() from quantmod
or Quandl() from Quandl (if src = "quandl").

Details

FUN is typically one of quantmod’s Op, Hi, Lo, Cl, Vo, Ad or one of the combined functions OpCl,
ClCl, HiCl, LoCl, LoHi, OpHi, OpLo, OpOp.

Value

xts object containing the data with column name(s) adjusted to be the ticker symbol (in case lengths
match; otherwise the column names are not adjusted); NA if data is not available.

Author(s)

Marius Hofert

Examples

## Not run:
## Note: This needs a working internet connection
## Get stock and volatility data (for all available trading days)
dat <- get_data(c("^GSPC", "^VIX")) # note: this needs a working internet connection
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## Plot them (Alternative: plot.xts() from xtsExtra)
library(zoo)
plot.zoo(dat, screens = 1, main = "", xlab = "Trading day", ylab = "Value")

## End(Not run)

GEV Generalized Extreme Value Distribution

Description

Density, distribution function, quantile function and random variate generation for the generalized
extreme value distribution (GEV).

Usage

dGEV(x, shape, loc = 0, scale = 1, log = FALSE)
pGEV(q, shape, loc = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qGEV(p, shape, loc = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rGEV(n, shape, loc = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations.

shape GEV shape parameter ξ, a real.

loc GEV location parameter µ, a real.

scale GEV scale parameter σ, a positive real.

lower.tail logical; if TRUE (default) probabilities are P (X ≤ x) otherwise, P (X > x).

log, log.p logical; if TRUE, probabilities p are given as log(p).

Details

The distribution function of the generalized extreme value distribution is given by

F (x) =

{
exp(−(1− ξ(x− µ)/σ)−1/ξ), ξ ̸= 0, 1 + ξ(x− µ)/σ > 0,
exp(−e−(x−µ)/σ), ξ = 0,

where σ > 0.

Value

dGEV() computes the density, pGEV() the distribution function, qGEV() the quantile function and
rGEV() random variates of the generalized extreme value distribution.
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Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts,
Techniques, Tools. Princeton University Press.

Examples

## Basic sanity checks
plot(pGEV(rGEV(1000, shape = 0.5), shape = 0.5)) # should be U[0,1]
curve(dGEV(x, shape = 0.5), from = -3, to = 5)

GEV_shape_plot Fitted GEV Shape as a Function of the Threshold

Description

Fit GEVs to block maxima and plot the fitted GPD shape as a function of the block size.

Usage

GEV_shape_plot(x, blocksize = tail(pretty(seq_len(length(x)/20), n = 64), -1),
estimate.cov = TRUE, conf.level = 0.95,
CI.col = adjustcolor(1, alpha.f = 0.2),
lines.args = list(), xlim = NULL, ylim = NULL,
xlab = "Block size", ylab = NULL,
xlab2 = "Number of blocks", plot = TRUE, ...)

Arguments

x vector of numeric data.

blocksize numeric vector of block sizes for which to fit a GEV to the block maxima.

estimate.cov logical indicating whether confidence intervals are to be computed.

conf.level confidence level of the confidence intervals if estimate.cov.

CI.col color of the pointwise asymptotic confidence intervals (CIs); if NA, no CIs are
shown.

lines.args list of arguments passed to the underlying lines() for drawing the shape
parameter as a function of the block size.

xlim, ylim, xlab, ylab
see plot().

xlab2 label of the secondary x-axis.

plot logical indicating whether a plot is produced.

... additional arguments passed to the underlying plot().
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Details

Such plots can be used in the block maxima method for determining the optimal block size (as the
smallest after which the plot is (roughly) stable).

Value

Invisibly returns a list containing the block sizes considered, the corresponding block maxima and
the fitted GEV distribution objects as returned by the underlying fit_GEV_MLE().

Author(s)

Marius Hofert

Examples

set.seed(271)
X <- rPar(5e4, shape = 4)
GEV_shape_plot(X)
abline(h = 1/4, lty = 3) # theoretical xi = 1/shape for Pareto

GPD (Generalized) Pareto Distribution

Description

Density, distribution function, quantile function and random variate generation for the (generalized)
Pareto distribution (GPD).

Usage

dGPD(x, shape, scale, log = FALSE)
pGPD(q, shape, scale, lower.tail = TRUE, log.p = FALSE)
qGPD(p, shape, scale, lower.tail = TRUE, log.p = FALSE)
rGPD(n, shape, scale)

dPar(x, shape, scale = 1, log = FALSE)
pPar(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qPar(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rPar(n, shape, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations.

shape GPD shape parameter ξ (a real number) and Pareto shape parameter θ (a positive
number).
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scale GPD scale parameter β (a positive number) and Pareto scale parameter κ (a
positive number).

lower.tail logical; if TRUE (default) probabilities are P (X ≤ x) otherwise, P (X > x).

log, log.p logical; if TRUE, probabilities p are given as log(p).

Details

The distribution function of the generalized Pareto distribution is given by

F (x) =

{
1− (1 + ξx/β)−1/ξ, ξ ̸= 0,
1− exp(−x/β), ξ = 0,

where β > 0 and x ≥ 0 if ξ ≥ 0 and x ∈ [0,−β/ξ] if ξ < 0.

The distribution function of the Pareto distribution is given by

F (x) = 1− (1 + x/κ)−θ, x ≥ 0,

where θ > 0, κ > 0.

In contrast to dGPD(), pGPD(), qGPD() and rGPD(), the functions dPar(), pPar(), qPar() and
rPar() are vectorized in their main argument and the parameters.

Value

dGPD() computes the density, pGPD() the distribution function, qGPD() the quantile function and
rGPD() random variates of the generalized Pareto distribution.

Similary for dPar(), pPar(), qPar() and rPar() for the Pareto distribution.

Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts,
Techniques, Tools. Princeton University Press.

Examples

## Basic sanity checks
curve(dGPD(x, shape = 0.5, scale = 3), from = -1, to = 5)
plot(pGPD(rGPD(1000, shape = 0.5, scale = 3), shape = 0.5, scale = 3)) # should be U[0,1]
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GPDtail GPD-Based Tail Distribution (POT method)

Description

Density, distribution function, quantile function and random variate generation for the GPD-based
tail distribution in the POT method.

Usage

dGPDtail(x, threshold, p.exceed, shape, scale, log = FALSE)
pGPDtail(q, threshold, p.exceed, shape, scale, lower.tail = TRUE, log.p = FALSE)
qGPDtail(p, threshold, p.exceed, shape, scale, lower.tail = TRUE, log.p = FALSE)
rGPDtail(n, threshold, p.exceed, shape, scale)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations.

threshold threshold u in the POT method.

p.exceed probability of exceeding the threshold u; for the Smith estimator, this is mean(x
> threshold) for x being the data.

shape GPD shape parameter ξ (a real number).

scale GPD scale parameter β (a positive number).

lower.tail logical; if TRUE (default) probabilities are P (X ≤ x) otherwise, P (X > x).

log, log.p logical; if TRUE, probabilities p are given as log(p).

Details

Let u denote the threshold (threshold), pu the exceedance probability (p.exceed) and FGPD the
GPD distribution function. Then the distribution function of the GPD-based tail distribution is given
by

F (q) = 1− pu(1− FGPD(q − u))

. The quantile function is

F−1(p) = u+ FGPD−1(1− (1− p)/pu)

and the density is
f(x) = pufGPD(x− u)

, where fGPD denotes the GPD density.

Note that the distribution function has a jumpt of height P (X ≤ u) (1-p.exceed) at u.
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Value

dGPDtail() computes the density, pGPDtail() the distribution function, qGPDtail() the quantile
function and rGPDtail() random variates of the GPD-based tail distribution in the POT method.

Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts,
Techniques, Tools. Princeton University Press.

Examples

## Generate data to work with
set.seed(271)
X <- rt(1000, df = 3.5) # in MDA(H_{1/df}); see MFE (2015, Section 16.1.1)

## Determine thresholds for POT method
mean_excess_plot(X[X > 0])
abline(v = 1.5)
u <- 1.5 # threshold

## Fit GPD to the excesses (per margin)
fit <- fit_GPD_MLE(X[X > u] - u)
fit$par
1/fit$par["shape"] # => close to df

## Estimate threshold exceedance probabilities
p.exceed <- mean(X > u)

## Define corresponding densities, distribution function and RNG
dF <- function(x) dGPDtail(x, threshold = u, p.exceed = p.exceed,

shape = fit$par["shape"], scale = fit$par["scale"])
pF <- function(q) pGPDtail(q, threshold = u, p.exceed = p.exceed,

shape = fit$par["shape"], scale = fit$par["scale"])
rF <- function(n) rGPDtail(n, threshold = u, p.exceed = p.exceed,

shape = fit$par["shape"], scale = fit$par["scale"])

## Basic check of dF()
curve(dF, from = u - 1, to = u + 5)

## Basic check of pF()
curve(pF, from = u, to = u + 5, ylim = 0:1) # quite flat here
abline(v = u, h = 1-p.exceed, lty = 2) # mass at u is 1-p.exceed (see 'Details')

## Basic check of rF()
set.seed(271)
X. <- rF(1000)
plot(X., ylab = "Losses generated from the fitted GPD-based tail distribution")
stopifnot(all.equal(mean(X. == u), 1-p.exceed, tol = 7e-3)) # confirms the above
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## Pick out 'continuous part'
X.. <- X.[X. > u]
plot(pF(X..), ylab = "Probability-transformed tail losses") # should be U[1-p.exceed, 1]

GPD_shape_plot Fitted GPD Shape as a Function of the Threshold

Description

Fit GPDs to various thresholds and plot the fitted GPD shape as a function of the threshold.

Usage

GPD_shape_plot(x, thresholds = seq(quantile(x, 0.5), quantile(x, 0.99),
length.out = 65),

estimate.cov = TRUE, conf.level = 0.95,
CI.col = adjustcolor(1, alpha.f = 0.2),
lines.args = list(), xlim = NULL, ylim = NULL,
xlab = "Threshold", ylab = NULL,
xlab2 = "Excesses", plot = TRUE, ...)

Arguments

x vector of numeric data.

thresholds numeric vector of thresholds for which to fit a GPD to the excesses.

estimate.cov logical indicating whether confidence intervals are to be computed.

conf.level confidence level of the confidence intervals if estimate.cov.

CI.col color of the pointwise asymptotic confidence intervals (CIs); if NA, no CIs are
shown.

lines.args list of arguments passed to the underlying lines() for drawing the shape
parameter as a function of the threshold.

xlim, ylim, xlab, ylab
see plot().

xlab2 label of the secondary x-axis.

plot logical indicating whether a plot is produced.

... additional arguments passed to the underlying plot().

Details

Such plots can be used in the peaks-over-threshold method for determining the optimal threshold
(as the smallest after which the plot is (roughly) stable).

Value

Invisibly returns a list containing the thresholds considered, the corresponding excesses and the
fitted GPD objects as returned by the underlying fit_GPD_MLE().
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Author(s)

Marius Hofert

Examples

set.seed(271)
X <- rt(1000, df = 3.5)
GPD_shape_plot(X)

hierarchical_matrix Construction of Hierarchical Matrices

Description

Constructing hierarchical matrices, used, for example, for hierarchical dependence models, cluster-
ing, etc.

Usage

hierarchical_matrix(x, diagonal = rep(1, d))

Arguments

x list of length 2 or 3 containing the homogeneous numeric entry of the current
block of the hierarchical matrix, the integer components belongning to the
current block (or NULL) and, possibly, another (nested) list of the same type.

diagonal diagonal elements of the hierarchical matrix.

Details

See the examples for how to use.

Value

A hierarchical matrix of the structure as specified in x with off-diagonal entries as specified in x
and diagonal entries as specified in diagonal.

Author(s)

Marius Hofert
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Examples

rho <- c(0.2, 0.3, 0.5, 0.8) # some entries (e.g., correlations)

## Test homogeneous case
x <- list(rho[1], 1:6)
hierarchical_matrix(x)

## Two-level case with one block of size 2
x <- list(rho[1], 1, list(rho[2], 2:3))
hierarchical_matrix(x)

## Two-level case with one block of size 2 and a larger homogeneous block
x <- list(rho[1], 1:3, list(rho[2], 4:5))
hierarchical_matrix(x)

## Test two-level case with three blocks of size 2
x <- list(rho[1], NULL, list(list(rho[2], 1:2),

list(rho[3], 3:4),
list(rho[4], 5:6)))

hierarchical_matrix(x)

## Test three-level case
x <- list(rho[1], 1:3, list(rho[2], NULL, list(list(rho[3], 4:5),

list(rho[4], 6:8))))
hierarchical_matrix(x)

## Test another three-level case
x <- list(rho[1], c(3, 6, 1), list(rho[2], c(9, 2, 7, 5),

list(rho[3], c(8, 4))))
hierarchical_matrix(x)

Hill Hill Estimator and Plot

Description

Compute the Hill estimator and Hill plot.

Usage

Hill_estimator(x, k = c(10, length(x)), conf.level = 0.95)
Hill_plot(x, k = c(10, length(x)), conf.level = 0.95, Hill.estimator = NULL,

log = "x", xlim = NULL, ylim = NULL,
xlab = "Order statistics", ylab = "Tail index",
CI.col = adjustcolor(1, alpha.f = 0.2), lines.args = list(),
xaxis2 = TRUE, xlab2 = "Empirical probability", ...)
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Arguments

x vector of numeric data.

k vector of length 2, determining the smallest and largest number of order statis-
tics of x to compute the Hill estimator for (the smallest needs to be >= 2). If k is
of length 1, k is expanded by length(x).

conf.level confidence level of the confidence intervals.

Hill.estimator object as returned by Hill_estimator().
log, xlim, ylim, xlab, ylab

see plot().

CI.col color of the pointwise asymptotic confidence intervals (CIs); if NA, no CIs are
shown.

lines.args list of additional arguments for the underlying lines() call to draw the Hill
estimator.

xaxis2 logical indicating whether a third axis is drawn that shows the empirical prob-
abilities 1-(k-1)/length(x) corresponding to k, so the value of the column
k.prob as returned by Hill_estimator().

xlab2 label of the secondary x-axis.

... additional arguments passed to the underlying plot().

Details

See McNeil et al. (2015, Section 5.2.4, (5.23))

Value

Hill_estimator(): A five-column matrix containing the indices k, their corresponding empiri-
cal probabilities k.prob, the estimated tail indices tail.index, and the lower and upper CI
endpoints CI.low and CI.up.

Hill_plot(): Hill plot by side-effect.

Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Examples

set.seed(271)
X <- rt(1000, df = 3.5)
Y <- X[X > 0]
Hill_plot(Y)
Hill_plot(Y, log = "", CI.col = NA)
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matrix_density_plota Density Plot of the Values from a Lower Triangular Matrix

Description

Density plot of all values in the lower triangular part of a matrix.

Usage

matrix_density_plot(x, xlab = "Entries in the lower triangular matrix",
main = "", text = NULL, side = 4, line = 1, adj = 0, ...)

Arguments

x matrix-like object.
xlab x-axis label.
main title.
text see mtext(). The text = "", it is omitted.
side see mtext().
line see mtext().
adj see mtext().
... additional arguments passed to the underlying plot().

Details

matrix_density_plot() is typically used for symmetric matrices (like correlation matrices, ma-
trices of pairwise Kendall’s tau or tail dependence parameters) to check the distribution of their
off-diagonal entries.

Value

invisible().

Author(s)

Marius Hofert

Examples

## Generate a random correlation matrix
d <- 50
L <- diag(1:d)
set.seed(271)
L[lower.tri(L)] <- runif(choose(d,2))
Sigma <- L
P <- cor(Sigma)
## Density of its lower triangular entries
matrix_density_plot(P)



matrix_plot 31

matrix_plot Graphical Tool for Visualizing Matrices

Description

Plot of a matrix.

Usage

matrix_plot(x, ran = range(x, na.rm = TRUE), ylim = rev(c(0.5, nrow(x) + 0.5)),
xlab = "Column", ylab = "Row",
scales = list(alternating = c(1,1), tck = c(1,0),

x = list(at = pretty(1:ncol(x)), rot = 90),
y = list(at = pretty(1:nrow(x)))),

at = NULL, colorkey = NULL, col = c("royalblue3", "white", "maroon3"),
col.regions = NULL, ...)

Arguments

x matrix-like object.

ran range (can be used to enforce (-1,1), for example).

ylim y-axis limits in reverse order (for the rows to appear ’top down’).

xlab x-axis label.

ylab y-axis label.

scales see levelplot(); if NULL, labels and ticks are omitted.

at see levelplot(). If NULL, a useful default is computed based on the given
values in x.

colorkey see levelplot(). If NULL, a useful default is computed based on at.

col vector of length two (if all values of x are non-positive or all are non-negative;
note that also a vector of length three is allowed in this case) or three (if x
contains negative and positive values) providing the color key’s default colors.

col.regions see levelplot(). If NULL, a useful default is computed based on at.

... additional arguments passed to the underlying levelplot().

Details

Plot of a matrix.

Value

The plot, a Trellis object.

Author(s)

Marius Hofert
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Examples

## Generate a random correlation matrix
d <- 50
L <- diag(1:d)
set.seed(271)
L[lower.tri(L)] <- runif(choose(d,2)) # random Cholesky factor
Sigma <- L
P <- cor(Sigma)

## Default
matrix_plot(P)
matrix_plot(P, ran = c(-1, 1)) # within (-1, 1)
matrix_plot(abs(P)) # if nonnegative
L. <- L
diag(L.) <- NA
matrix_plot(L.) # Cholesky factor without diagonal

## Default if nonpositive
matrix_plot(-abs(P))

## Changing colors
matrix_plot(P, ran = c(-1, 1),

col.regions = grey(c(seq(0, 1, length.out = 100),
seq(1, 0, length.out = 100))))

## An example with overlaid lines
library(lattice)
my_panel <- function(...) {

panel.levelplot(...)
panel.abline(h = c(10, 20), v = c(10, 20), lty = 2)

}
matrix_plot(P, panel = my_panel)

mean_excess Mean Excess

Description

Sample mean excess function, mean excess function of a GPD and sample mean excess plot.

Usage

mean_excess_np(x, omit = 3)
mean_excess_plot(x, omit = 3,

xlab = "Threshold", ylab = "Mean excess over threshold", ...)
mean_excess_GPD(x, shape, scale)
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Arguments

x mean_excess_GPD(): numeric vector of evaluation points of the mean excess
function of the GPD.

otherwise: numeric vector of data.

omit number ≥ 1 of unique last observations to be omitted from the sorted data (as
mean excess plot becomes unreliable for these observations as thresholds).

xlab x-axis label.

ylab y-axis label.

... additional arguments passed to the underlying plot().

shape GPD shape parameter ξ.

scale GPD scale parameter β.

Details

Mean excess plots can be used in the peaks-over-threshold method for choosing a threshold. To this
end, one chooses the smallest threshold above which the mean excess plot is roughly linear.

Value

mean_excess_np() returns a two-column matrix giving the sorted data without the omit-largest
unique values (first column) and the corresponding values of the sample mean excess function
(second column). It is mainly used in mean_excess_plot().

mean_excess_plot() returns invisible().

mean_excess_GPD() returns the mean excess function of a generalized Pareto distribution evaluated
at x.

Author(s)

Marius Hofert

Examples

## Generate losses to work with
set.seed(271)
X <- rt(1000, df = 3.5) # in MDA(H_{1/df}); see MFE (2015, Section 16.1.1)

## (Sample) mean excess plot and threshold choice
mean_excess_plot(X[X > 0]) # we only use positive values here to see 'more'
## => Any value in [0.8, 2] seems reasonable as threshold at first sight
## but 0.8 to 1 turns out to be too small for the degrees of
## freedom implied by the GPD estimator to be close to the true value 3.5.
## => We go with threshold 1.5 here.
u <- 1.5 # thresholds

## An alternative way
ME <- mean_excess_np(X[X > 0])
plot(ME, xlab = "Threshold", ylab = "Mean excess over threshold")
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## Mean excess plot with mean excess function of the fitted GPD
fit <- fit_GPD_MLE(X[X > u] - u)
q <- seq(u, ME[nrow(ME),"x"], length.out = 129)
MEF.GPD <- mean_excess_GPD(q-u, shape = fit$par[["shape"]], scale = fit$par[["scale"]])
mean_excess_plot(X[X > 0]) # mean excess plot for positive losses...
lines(q, MEF.GPD, col = "royalblue", lwd = 1.4) # ... with mean excess function of the fitted GPD

NA_plot Graphical Tool for Visualizing NAs in a Data Set

Description

Plot NAs in a data set.

Usage

NA_plot(x, col = c("black", "white"), xlab = "Time", ylab = "Component",
text = "Black: NA; White: Available data",
side = 4, line = 1, adj = 0, ...)

Arguments

x matrix (ideally an xts object).

col bivariate vector containing the colors for missing and available data, respec-
tively.

xlab x-axis label.

ylab y-axis label.

text see mtext(). The text = "", it is omitted.

side see mtext().

line see mtext().

adj see mtext().

... additional arguments passed to the underlying image().

Details

Indicate NAs in a data set.

Value

invisible().

Author(s)

Marius Hofert
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Examples

## Generate data
n <- 1000 # sample size
d <- 100 # dimension
set.seed(271) # set seed
x <- matrix(runif(n*d), ncol = d) # generate data

## Assign missing data
k <- ceiling(d/4) # fraction of columns with some NAs
j <- sample(1:d, size = k) # columns j with NAs
i <- sample(1:n, size = k) # 1:i will be NA in each column j
X <- x
for(k. in seq_len(k)) X[1:i[k.], j[k.]] <- NA # put in NAs

## Plot NAs
NA_plot(X) # indicate NAs

pp_qq_plot P-P and Q-Q Plots

Description

Probability-probability plots and quantile-quantile plots.

Usage

pp_plot(x, FUN, pch = 20, xlab = "Theoretical probabilities",
ylab = "Sample probabilities", ...)

qq_plot(x, FUN = qnorm, method = c("theoretical", "empirical"),
pch = 20, do.qqline = TRUE, qqline.args = NULL,
xlab = "Theoretical quantiles", ylab = "Sample quantiles",
...)

Arguments

x data vector.

FUN function. For

pp_plot(): The distribution function (vectorized).
qq_plot(): The quantile function (vectorized).

pch plot symbol.

xlab x-axis label.

ylab y-axis label.

do.qqline logical indicating whether a Q-Q line is plotted.
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method method used to construct the Q-Q line. If "theoretical", the theoretically true
line with intercept 0 and slope 1 is displayed; if "empirical", the intercept
and slope are determined with qqline(). The former helps deciding whether x
comes from the distribution specified by FUN exactly, the latter whether x comes
from a location-scale transformed distribution specified by FUN.

qqline.args list containing additional arguments passed to the underlying abline() func-
tions. Defaults to list(a = 0, b = 1) if method = "theoretical" and list()
if method = "empirical".

... additional arguments passed to the underlying plot().

Details

Note that Q-Q plots are more widely used than P-P plots (as they highlight deviations in the tails
more clearly).

Value

invisible().

Author(s)

Marius Hofert

Examples

## Generate data
n <- 1000
mu <- 1
sig <- 3
nu <- 3.5
set.seed(271) # set seed
x <- mu + sig * sqrt((nu-2)/nu) * rt(n, df = nu) # sample from t_nu(mu, sig^2)

## P-P plot
pF <- function(q) pt((q - mu) / (sig * sqrt((nu-2)/nu)), df = nu)
pp_plot(x, FUN = pF)

## Q-Q plot
qF <- function(p) mu + sig * sqrt((nu-2)/nu) * qt(p, df = nu)
qq_plot(x, FUN = qF)

## A comparison with R's qqplot() and qqline()
qqplot(qF(ppoints(length(x))), x) # the same (except labels)
qqline(x, distribution = qF) # slightly different (since *estimated*)

## Difference of the two methods
set.seed(271)
z <- rnorm(1000)
## Standardized data
qq_plot(z, FUN = qnorm) # fine
qq_plot(z, FUN = qnorm, method = "empirical") # fine
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## Location-scale transformed data
mu <- 3
sig <- 2
z. <- mu+sig*z
qq_plot(z., FUN = qnorm) # not fine (z. comes from N(mu, sig^2), not N(0,1))
qq_plot(z., FUN = qnorm, method = "empirical") # fine (as intercept and slope are estimated)

returns Computing Returns and Inverse Transformation

Description

Compute log-returns, simple returns and basic differences (or the inverse operations) from given
data.

Usage

returns(x, method = c("logarithmic", "simple", "diff"), inverse = FALSE,
start, start.date)

returns_qrmtools(x, method = c("logarithmic", "simple", "diff"),
inverse = FALSE, start, start.date)

Arguments

x matrix or vector (possibly a xts object) to be turned into returns (if inverse =
FALSE) or returns to be turned into the original data (if inverse = TRUE).

method character string indicating the method to be used (log-returns (logarithmic
changes), simple returns (relative changes), or basic differences). Note that this
can also be a vector of such methods of length equal to the number of columns
of x.

inverse logical indicating whether the inverse transformation (data from given returns)
shall be computed (if TRUE, this requires start to be specified).

start if inverse = TRUE, the last available value of the time series to be constructed
from the given returns x.

start.date character or Date object to be used as the date corresponding to the value
start; currently only used for xts objects.

Details

If inverse = FALSE and x is an xts object, the returned object is an xts, too.

Note that the R package timeSeries also contains a function returns() (and hence the order in
which timeSeries and qrmtools are loaded matters to get the right returns()). For this reason,
returns_qrmtools() is an alias for returns() from qrmtools.

Value

vector or matrix with the same number of columns as x just one row less if inverse = FALSE or
one row more if inverse = TRUE.
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Author(s)

Marius Hofert

Examples

## Generate two paths of a geometric Brownian motion
S0 <- 10 # current stock price S_0
r <- 0.01 # risk-free annual interest rate
sig <- 0.2 # (constant) annual volatility
T <- 2 # maturity in years
N <- 250 # business days per year
t <- 1:(N*T) # time points to be sampled
npath <- 2 # number of paths
set.seed(271) # for reproducibility
S <- replicate(npath, S0 * exp(cumsum(rnorm(N*T, # sample paths of S_t

mean = (r-sig^2/2)/N,
sd = sqrt((sig^2)/N))))) # (N*T, npath)

## Turn into xts objects
library(xts)
sdate <- as.Date("2000-05-02") # start date
S. <- as.xts(S, order.by = seq(sdate, length.out = N*T, by = "1 week"))
plot(S.[,1], main = "Stock 1")
plot(S.[,2], main = "Stock 2")

### Log-returns ################################################################

## Based on S[,1]
X <- returns(S[,1]) # build log-returns (one element less than S)
Y <- returns(X, inverse = TRUE, start = S[1,1]) # transform back
stopifnot(all.equal(Y, S[,1]))

## Based on S
X <- returns(S) # build log-returns (one element less than S)
Y <- returns(X, inverse = TRUE, start = S[1,]) # transform back
stopifnot(all.equal(Y, S))

## Based on S.[,1]
X <- returns(S.[,1])
Y <- returns(X, inverse = TRUE, start = S.[1,1], start.date = sdate)
stopifnot(all.equal(Y, S.[,1], check.attributes = FALSE))

## Based on S.
X <- returns(S.)
Y <- returns(X, inverse = TRUE, start = S.[1], start.date = sdate)
stopifnot(all.equal(Y, S., check.attributes = FALSE))

## Sign-adjusted (negative) log-returns
X <- -returns(S) # build -log-returns
Y <- returns(-X, inverse = TRUE, start = S[1,]) # transform back
stopifnot(all.equal(Y, S))
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### Simple returns #############################################################

## Simple returns based on S
X <- returns(S, method = "simple")
Y <- returns(X, method = "simple", inverse = TRUE, start = S[1,])
stopifnot(all.equal(Y, S))

## Simple returns based on S.
X <- returns(S., method = "simple")
Y <- returns(X, method = "simple", inverse = TRUE, start = S.[1,],

start.date = sdate)
stopifnot(all.equal(Y, S., check.attributes = FALSE))

## Sign-adjusted (negative) simple returns
X <- -returns(S, method = "simple")
Y <- returns(-X, method = "simple", inverse = TRUE, start = S[1,])
stopifnot(all.equal(Y, S))

### Basic differences ##########################################################

## Basic differences based on S
X <- returns(S, method = "diff")
Y <- returns(X, method = "diff", inverse = TRUE, start = S[1,])
stopifnot(all.equal(Y, S))

## Basic differences based on S.
X <- returns(S., method = "diff")
Y <- returns(X, method = "diff", inverse = TRUE, start = S.[1,],

start.date = sdate)
stopifnot(all.equal(Y, S., check.attributes = FALSE))

## Sign-adjusted (negative) basic differences
X <- -returns(S, method = "diff")
Y <- returns(-X, method = "diff", inverse = TRUE, start = S[1,])
stopifnot(all.equal(Y, S))

### Vector-case of 'method' ####################################################

X <- returns(S., method = c("logarithmic", "diff"))
Y <- returns(X, method = c("logarithmic", "diff"), inverse = TRUE, start = S.[1,],

start.date = sdate)
stopifnot(all.equal(Y, S., check.attributes = FALSE))

risk_measures Risk Measures
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Description

Computing risk measures.

Usage

## Value-at-risk
VaR_np(x, level, names = FALSE, type = 1, ...)
VaR_t(level, loc = 0, scale = 1, df = Inf)
VaR_t01(level, df = Inf)
VaR_GPD(level, shape, scale)
VaR_Par(level, shape, scale = 1)
VaR_GPDtail(level, threshold, p.exceed, shape, scale)

## Expected shortfall
ES_np(x, level, method = c(">", ">="), verbose = FALSE, ...)
ES_t(level, loc = 0, scale = 1, df = Inf)
ES_t01(level, df = Inf)
ES_GPD(level, shape, scale)
ES_Par(level, shape, scale = 1)
ES_GPDtail(level, threshold, p.exceed, shape, scale)

## Range value-at-risk
RVaR_np(x, level, ...)

## Multivariate geometric value-at-risk and expectiles
gVaR(x, level, start = colMeans(x),

method = if(length(level) == 1) "Brent" else "Nelder-Mead", ...)
gEX(x, level, start = colMeans(x),

method = if(length(level) == 1) "Brent" else "Nelder-Mead", ...)

Arguments

x gVaR(), gEX(): matrix of (rowwise) multivariate losses.
VaR_np(), ES_np(), RVaR_np(): if x is a matrix then rowSums() is applied

first (so value-at-risk and expected shortfall of the sum is computed).
otherwise: vector of losses.

level RVaR_np(): vector of length 1 or 2 giving the lower and upper confidence
level; if of length 1, it is interpreted as the lower confidence level and the
upper one is taken to be 1.

gVaR(), gEX(): vector or matrix of (rowwise) confidence levels α (all in
[0, 1]).

otherwise: confidence level α ∈ [0, 1].

names see ?quantile.

type see ?quantile.

loc location parameter µ.

shape VaR_GPD(), ES_GPD(): GPD shape parameter ξ, a real number.
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VaR_Par(), ES_Par(): Pareto shape parameter θ, a positive number.

scale VaR_t(), ES_t(): t scale parameter σ, a positive number.
VaR_GPD(), ES_GPD(): GPD scale parameter β, a positive number.
VaR_Par(), ES_Par(): Pareto scale parameter κ, a positive number.

df degrees of freedom, a positive number; choose df = Inf for the normal distribu-
tion. For the standardized t distributions, df has to be greater than 2.

threshold threhold u (used to estimate the exceedance probability based on the data x).

p.exceed exceedance probability; typically mean(x > threshold) for x being the data
modeled with the peaks-over-threshold (POT) method.

start vector of initial values for the underlying optim().

method ES_np(): character string indicating the method for computing expected short-
fall.

gVaR(), gEX(): the optimization method passed to the underlying optim().

verbose logical indicating whether verbose output is given (in case the mean is com-
puted over (too) few observations).

... VaR_np(): additional arguments passed to the underlying quantile().
ES_np(), RVaR_np(): additional arguments passed to the underlying VaR_np().
gVaR(), gEX(): additional arguments passed to the underlying optim().

Details

The distribution function of the Pareto distribution is given by

F (x) = 1− (κ/(κ+ x))θ, x ≥ 0,

where θ > 0, κ > 0.

Value

VaR_np(), ES_np(), RVaR_np() estimate value-at-risk, expected shortfall and range value-at-risk
non-parametrically. For expected shortfall, if method = ">=" (method = ">", the default), losses
greater than or equal to (strictly greater than) the nonparametric value-at-risk estimate are averaged;
in the former case, there might be no such loss, in which case NaN is returned. For range value-at-
risk, losses greater than the nonparametric VaR estimate at level level[1] and less than or equal to
the nonparametric VaR estimate at level level[2] are averaged.

VaR_t(), ES_t() compute value-at-risk and expected shortfall for the t (or normal) distribution.
VaR_t01(), ES_t01() compute value-at-risk and expected shortfall for the standardized t (or nor-
mal) distribution, so scaled t distributions to have mean 0 and variance 1; note that they require a
degrees of freedom parameter greater than 2.

VaR_GPD(), ES_GPD() compute value-at-risk and expected shortfall for the generalized Pareto dis-
tribution (GPD).

VaR_Par(), ES_Par() compute value-at-risk and expected shortfall for the Pareto distribution.

gVaR(), gEX() compute the multivariate geometric value-at-risk and expectiles suggested by Chaud-
huri (1996) and Herrmann et al. (2018), respectively.
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Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. Journal of the
American Statistical Assosiation 91(434), 862–872.

Herrmann, K., Hofert, M. and Mailhot, M. (2018). Multivariate geometric expectiles. Scandinavian
Actuarial Journal, 2018(7), 629–659.

Examples

### 1 Univariate measures ######################################################

## Generate some losses and (non-parametrically) estimate VaR_alpha and ES_alpha
set.seed(271)
L <- rlnorm(1000, meanlog = -1, sdlog = 2) # L ~ LN(mu, sig^2)
## Note: - meanlog = mean(log(L)) = mu, sdlog = sd(log(L)) = sig
## - E(L) = exp(mu + (sig^2)/2), var(L) = (exp(sig^2)-1)*exp(2*mu + sig^2)
## To obtain a sample with E(L) = a and var(L) = b, use:
## mu = log(a)-log(1+b/a^2)/2 and sig = sqrt(log(1+b/a^2))
VaR_np(L, level = 0.99)
ES_np(L, level = 0.99)

## Example 2.16 in McNeil, Frey, Embrechts (2015)
V <- 10000 # value of the portfolio today
sig <- 0.2/sqrt(250) # daily volatility (annualized volatility of 20%)
nu <- 4 # degrees of freedom for the t distribution
alpha <- seq(0.001, 0.999, length.out = 256) # confidence levels
VaRnorm <- VaR_t(alpha, scale = V*sig, df = Inf)
VaRt4 <- VaR_t(alpha, scale = V*sig*sqrt((nu-2)/nu), df = nu)
ESnorm <- ES_t(alpha, scale = V*sig, df = Inf)
ESt4 <- ES_t(alpha, scale = V*sig*sqrt((nu-2)/nu), df = nu)
ran <- range(VaRnorm, VaRt4, ESnorm, ESt4)
plot(alpha, VaRnorm, type = "l", ylim = ran, xlab = expression(alpha), ylab = "")
lines(alpha, VaRt4, col = "royalblue3")
lines(alpha, ESnorm, col = "darkorange2")
lines(alpha, ESt4, col = "maroon3")
legend("bottomright", bty = "n", lty = rep(1,4), col = c("black",

"royalblue3", "darkorange3", "maroon3"),
legend = c(expression(VaR[alpha]~~"for normal model"),

expression(VaR[alpha]~~"for "*t[4]*" model"),
expression(ES[alpha]~~"for normal model"),
expression(ES[alpha]~~"for "*t[4]*" model")))

### 2 Multivariate measures ####################################################

## Setup
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library(copula)
n <- 1e4 # MC sample size
nu <- 3 # degrees of freedom
th <- iTau(tCopula(df = nu), tau = 0.5) # correlation parameter
cop <- tCopula(param = th, df = nu) # t copula
set.seed(271) # for reproducibility
U <- rCopula(n, cop = cop) # copula sample
theta <- c(2.5, 4) # marginal Pareto parameters
stopifnot(theta > 2) # need finite 2nd moments
X <- sapply(1:2, function(j) qPar(U[,j], shape = theta[j])) # generate X
N <- 17 # number of angles (rather small here because of run time)
phi <- seq(0, 2*pi, length.out = N) # angles
r <- 0.98 # radius
alpha <- r * cbind(alpha1 = cos(phi), alpha2 = sin(phi)) # vector of confidence levels

## Compute geometric value-at-risk
system.time(res <- gVaR(X, level = alpha))
gvar <- t(sapply(seq_len(nrow(alpha)), function(i) {

x <- res[[i]]
if(x[["convergence"]] != 0) # 0 = 'converged'

warning("No convergence for alpha = (", alpha[i,1], ", ", alpha[i,2],
") (row ", i, ")")

x[["par"]]
})) # (N, 2)-matrix

## Compute geometric expectiles
system.time(res <- gEX(X, level = alpha))
gex <- t(sapply(seq_len(nrow(alpha)), function(i) {

x <- res[[i]]
if(x[["convergence"]] != 0) # 0 = 'converged'

warning("No convergence for alpha = (", alpha[i,1], ", ", alpha[i,2],
") (row ", i, ")")

x[["par"]]
})) # (N, 2)-matrix

## Plot geometric VaR and geometric expectiles
plot(gvar, type = "b", xlab = "Component 1 of geometric VaRs and expectiles",

ylab = "Component 2 of geometric VaRs and expectiles",
main = "Multivariate geometric VaRs and expectiles")

lines(gex, type = "b", col = "royalblue3")
legend("bottomleft", lty = 1, bty = "n", col = c("black", "royalblue3"),

legend = c("geom. VaR", "geom. expectile"))
lab <- substitute("MC sample size n ="~n.*","~t[nu.]~"copula with Par("*th1*

") and Par("*th2*") margins",
list(n. = n, nu. = nu, th1 = theta[1], th2 = theta[2]))

mtext(lab, side = 4, line = 1, adj = 0)

step_plot Plot of Step Functions, Empirical Distribution and Quantile Functions
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Description

Plotting step functions, empirical distribution functions and empirical quantile functions.

Usage

step_plot(x, y, y0 = NA, x0 = NA, x1 = NA, method = c("edf", "eqf"), log = "",
verticals = NA, do.points = NA, add = FALSE,
col = par("col"), main = "", xlab = "x", ylab = "Function value at x",
plot.args = NULL, segments.args = NULL, points.args = NULL)

edf_plot(x, y0 = 0, x0 = NA, x1 = NA, log = "",
verticals = NA, do.points = NA, col = par("col"),
main = "", xlab = "x", ylab = "Distribution function at x", ...)

eqf_plot(x, y0 = NA, x0 = 0, x1 = 1, log = "",
verticals = NA, do.points = NA, col = par("col"),
main = "", xlab = "x", ylab = "Quantile function at x", ...)

Arguments

x step_plot(): numeric vector of x-values.
edf_plot(): numeric vector or a list of numeric vectors; if a list, each ele-

ment corresponds to the x-values of an empirical distribution function.
eqf_plot(): similar to edf_plot().

y y-values corresponding to x.

y0 y-value of the graph extending to the left of the first x-value.

x0 smallest x-value.

x1 largest x-value.

method character string indicating the type of method to be used ("edf" for empricial
distribution function types of plots and "eqf" for empirical quantile function
types).

log character indicating whether a logarithmic x-axis is used.

verticals logical indicating whether to plot vertical lines (defaults to TRUE if and only if
there are 100 or more data points).

do.points logical (vector) indicating whether points are to be plotted (defaults to TRUE if
and only if there are less than 100 data points).

add logical indicating whether the current plot is added to the last one.

col color (for edf_plot() this can be a vector).

main title.

xlab x-axis label.

ylab y-axis label.

plot.args list of additional arguments passed to the underlying plot().

segments.args list of additional arguments passed to the underlying segments().

points.args list of additional arguments passed to the underlying points().

... additional arguments passed to the underlying step_plot().
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Value

Nothing (plot by side-effect).

Author(s)

Marius Hofert

Examples

x <- c(5, 2, 4, 2, 3, 2, 2, 2, 1, 2) # example data
edf_plot(x) # empirical distribution function (edf)
edf_plot(x, log = "x")
edf_plot(x, verticals = TRUE)
edf_plot(x, do.points = FALSE)
cols <- c("black", "royalblue3")
edf_plot(list(x, x+2), col = cols) # edf with shifted edf
edf_plot(list(x, x+2), col = cols, x0 = 0.5, x1 = 7.5)
edf_plot(list(x, x+2), col = cols, x0 = 0.5, x1 = 7.5, verticals = TRUE)
eqf_plot(x) # empirical quantile function
eqf_plot(x, verticals = TRUE)

tail_plot Plot of an Empirical Surival Function with Smith Estimator

Description

Plot an empirical tail survival function, possibly overlaid with the Smith estimator.

Usage

tail_plot(x, threshold, shape = NULL, scale = NULL,
q = NULL, length.out = 129, lines.args = list(),
log = "xy", xlim = NULL, ylim = NULL,
xlab = "x", ylab = "Tail probability at x", ...)

Arguments

x numeric vector of data.

threshold numeric(1) giving the threshold u above which the tail (starts and) is to be
plotted.

shape NULL or the GPD shape parameter ξ (typically obtained via fit_GPD_MLE()).

scale NULL or the GPD shape parameter β (typically obtained via fit_GPD_MLE()).

q NULL, numeric(1) or numeric vector of evaluationn points of the Smith estima-
tor (semi-parametric GPD-based tail estimator in the POT method). If NULL, the
evaluation points are determined internally as an equidistant sequence of length
length.out between the smallest and largest exceedance (taken equidistant in
log-scale if log contains "x"). If numeric(1), then the behavior is similar to
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NULL with the exception that the plot is extended to the right of the largest ex-
ceedance if q is larger than the largest exceedance.

length.out length of q.

lines.args list of arguments passed to the underlying lines().

log character indicating whether logarithmic axes are to be used.

xlim x-axis limits.

ylim y-axis limits.

xlab x-axis label.

ylab y-axis label.

... additional arguments passed to the underlying plot().

Value

If both shape and scale are provided, tail_plot() overlays the empirical tail survival function
estimator (evaluated at the exceedances) with the corresponding GPD. In this case, tail_plot()
invisibly returns a list with two two-column matrices, one containing the x-values and y-values of
the empirical survival distribution estimator and one containing the x-values and y-values of the
Smith estimator. If shape or scale are NULL, tail_plot() invisibly returns a two-column matrix
with the x-values and y-values of the empirical survival distribution estimator.

Author(s)

Marius Hofert

Examples

## Generate losses to work with
set.seed(271)
X <- rt(1000, df = 3.5) # in MDA(H_{1/df}); see MFE (2015, Section 16.1.1)

## Threshold (see ?dGPDtail, for example)
u <- 1.5 # threshold

## Plots of empirical survival distribution functions (overlaid with Smith estimator)
tail_plot(X, threshold = u, log = "", type = "b") # => need log-scale
tail_plot(X, threshold = u, type = "s") # as a step function
fit <- fit_GPD_MLE(X[X > u] - u) # fit GPD to excesses (POT method)
tail_plot(X, threshold = u, # without log-scale

shape = fit$par[["shape"]], scale = fit$par[["scale"]], log = "")
tail_plot(X, threshold = u, # highlights linearity

shape = fit$par[["shape"]], scale = fit$par[["scale"]])



tests 47

tests Formal Tests of Multivariate Normality

Description

Compute formal tests based on the Mahalanobis distances and Mahalanobis angles of multivariate
normality (including Mardia’s kurtosis test and Mardia’s skewness test).

Usage

maha2_test(x, type = c("ad.test", "ks.test"), dist = c("chi2", "beta"), ...)
mardia_test(x, type = c("kurtosis", "skewness"), method = c("direct", "chol"))

Arguments

x (n, d)-matrix of data.

type character string indicating the type of test:

"ad.test": Anderson-Darling test as computed by the underlying ad.test().
"ks.test": Kolmogorov-Smirnov test as computed by the underlying ks.test().
"kurtosis": Mardia’s kurtosis test (based on Mahalanobis distances).
"skewness": Mardia’s skewness test (based on Mahalanobis angles).

dist distribution to check against.

method method for computing the Mahalanobis angles.

... additional arguments passed to the underlying ad.test() or ks.test().

Value

An htest object (for maha2_test the one returned by the underlying ad.test() or ks.test()).

Author(s)

Marius Hofert

Examples

set.seed(271)
U <- matrix(runif(3 * 200), ncol = 3)
X <- cbind(qexp(U[,1]), qnorm(U[,2:3]))
maha2_test(X) # at the 'edge' of rejecting
maha2_test(X, type = "ks.test") # at the 'edge', too
mardia_test(X) # clearly rejects at 5%
mardia_test(X, type = "skewness") # clearly rejects at 5%
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VaR_ES_bounds_analytical

“Analytical” Best and Worst Value-at-Risk for Given Marginals

Description

Compute the best and worst Value-at-Risk (VaR) for given marginal distributions with an “analyti-
cal” method.

Usage

## ``Analytical'' methods
crude_VaR_bounds(level, qF, d = NULL, ...)
VaR_bounds_hom(level, d, method = c("Wang", "Wang.Par", "dual"),

interval = NULL, tol = NULL, ...)
dual_bound(s, d, pF, tol = .Machine$double.eps^0.25, ...)

Arguments

level confidence level α for VaR and ES (e.g., 0.99).

qF d-list containing the marginal quantile functions. In the homogeneous case, qF
can also be a single function.

d dimension (number of risk factors; ≥ 2). For crude_VaR_bounds(), d only
needs to be given in the homogeneous case in which qF is a function.

method character string. method = "Wang" and method = "Wang.Par" apply the ap-
proach of McNeil et al. (2015, Proposition 8.32) for computing best (i.e., small-
est) and worst (i.e., largest) VaR. The latter method assumes Pareto margins and
thus does not require numerical integration. method = "dual" applies the dual
bound approach as in Embrechts et al. (2013, Proposition 4) for computing
worst VaR (no value for the best VaR can be obtained with this approach and
thus NA is returned for the best VaR).

interval initial interval (a numeric(2)) for computing worst VaR. If not provided, these
are the defaults chosen:

method = "Wang": initial interval is [0, (1− α)/d].
method = "Wang.Par": initial interval is [cl, cu], where cl and cu are chosen as

in Hofert et al. (2015).
method = "dual": in this case, no good defaults are known. Note that the lower

endpoint of the initial interval has to be sufficiently large in order for the
the inner root-finding algorithm to find a root; see Details.

tol tolerance for uniroot() for computing worst VaR. This defaults (for tol =
NULL) to 2.2204∗10−16 for method = "Wang" or method = "Wang.Par" (where a
smaller tolerance is crucial) and to uniroot()’s default .Machine$double.eps^0.25
otherwise. Note that for method = "dual", tol is used for both the outer and
the inner root-finding procedure.
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s dual bound evaluation point.

pF marginal loss distribution function (homogeneous case only).

... crude_VaR_bounds(): ellipsis argument passed to (all provided) quantile func-
tions.

VaR_bounds_hom(): case method = "Wang" requires the quantile function qF()
to be provided and additional arguments passed via the ellipsis argument are
passed on to the underlying integrate(). For method = "Wang.Par" the
ellipsis argument must contain the parameter shape (the shape parameter
θ > 0 of the Pareto distribution). For method = "dual", the ellipsis ar-
gument must contain the distribution function pF() and the initial interval
interval for the outer root finding procedure (not for d = 2); additional
arguments are passed on to the underlying integrate() for computing the
dual bound D(s).

dual_bound(): ellipsis argument is passed to the underlying integrate().

Details

For d = 2, VaR_bounds_hom() uses the method of Embrechts et al. (2013, Proposition 2). For
method = "Wang" and method = "Wang.Par" the method presented in McNeil et al. (2015, Prop.
8.32) is implemented; this goes back to Embrechts et al. (2014, Prop. 3.1; note that the published
version of this paper contains typos for both bounds). This requires one uniroot() and, for the
generic method = "Wang", one integrate(). The critical part for the generic method = "Wang"
is the lower endpoint of the initial interval for uniroot(). If the (marginal) distribution function
has finite first moment, this can be taken as 0. However, if it has infinite first moment, the lower
endpoint has to be positive (but must lie below the unknown root). Note that the upper endpoint
(1−α)/d also happens to be a root and thus one needs a proper initional interval containing the root
and being stricticly contained in (0, (1 − α)/d. In the case of Pareto margins, Hofert et al. (2015)
have derived such an initial (which is used by method = "Wang.Par"). Also note that the chosen
smaller default tolerances for uniroot() in case of method = "Wang" and method = "Wang.Par"
are crucial for obtaining reliable VaR values; see Hofert et al. (2015).

For method = "dual" for computing worst VaR, the method presented of Embrechts et al. (2013,
Proposition 4) is implemented. This requires two (nested) uniroot(), and an integrate(). For
the inner root-finding procedure to find a root, the lower endpoint of the provided initial interval
has to be “sufficiently large”.

Note that these approaches for computing the VaR bounds in the homogeneous case are numerically
non-trivial; see the source code and vignette("VaR_bounds", package = "qrmtools") for more
details. As a rule of thumb, use method = "Wang" if you have to (i.e., if the margins are not Pareto)
and method = "Wang.Par" if you can (i.e., if the margins are Pareto). It is not recommended to use
(the numerically even more challenging) method = "dual".

Value

crude_VaR_bounds() returns crude lower and upper bounds for VaR at confidence level α for any
d-dimensional model with marginal quantile functions specified by qF.

VaR_bounds_hom() returns the best and worst VaR at confidence level α for d risks with equal
distribution function specified by the ellipsis ....
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dual_bound() returns the value of the dual bound D(s) as given in Embrechts, Puccetti, Rüschen-
dorf (2013, Eq. (12)).

Author(s)

Marius Hofert

References

Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An Academic
Response to Basel 3.5. Risks 2(1), 25–48.

Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation.
Journal of Banking & Finance 37, 2750–2764.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Hofert, M., Memartoluie, A., Saunders, D. and Wirjanto, T. (2017). Improved Algorithms for
Computing Worst Value-at-Risk. Statistics & Risk Modeling or, for an earlier version, https:
//arxiv.org/abs/1505.02281.

See Also

RA(), ARA(), ABRA() for empirical solutions in the inhomogeneous case.

vignette("VaR_bounds", package = "qrmtools") for more example calls, numerical challenges
encoutered and a comparison of the different methods for computing the worst (i.e., largest) Value-
at-Risk.

Examples

## See ?rearrange

VaR_ES_bounds_rearrange

Worst and Best Value-at-Risk and Best Expected Shortfall for Given
Marginals via Rearrangements

Description

Compute the worst and best Value-at-Risk (VaR) and the best expected shortfall (ES) for given
marginal distributions via rearrangements.

https://arxiv.org/abs/1505.02281
https://arxiv.org/abs/1505.02281
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Usage

## Workhorses
## Column rearrangements
rearrange(X, tol = 0, tol.type = c("relative", "absolute"),

n.lookback = ncol(X), max.ra = Inf,
method = c("worst.VaR", "best.VaR", "best.ES"),

sample = TRUE, is.sorted = FALSE, trace = FALSE, ...)
## Block rearrangements
block_rearrange(X, tol = 0, tol.type = c("absolute", "relative"),

n.lookback = ncol(X), max.ra = Inf,
method = c("worst.VaR", "best.VaR", "best.ES"),
sample = TRUE, trace = FALSE, ...)

## User interfaces
## Rearrangement Algorithm
RA(level, qF, N, abstol = 0, n.lookback = length(qF), max.ra = Inf,

method = c("worst.VaR", "best.VaR", "best.ES"), sample = TRUE)
## Adaptive Rearrangement Algorithm
ARA(level, qF, N.exp = seq(8, 19, by = 1), reltol = c(0, 0.01),

n.lookback = length(qF), max.ra = 10*length(qF),
method = c("worst.VaR", "best.VaR", "best.ES"),
sample = TRUE)

## Adaptive Block Rearrangement Algorithm
ABRA(level, qF, N.exp = seq(8, 19, by = 1), absreltol = c(0, 0.01),

n.lookback = NULL, max.ra = Inf,
method = c("worst.VaR", "best.VaR", "best.ES"),
sample = TRUE)

Arguments

X (N, d)-matrix of quantiles (to be rearranged). If is.sorted it is assumed that the
columns of X are sorted in increasing order.

tol (absolute or relative) tolerance to determine (the individual) convergence. This
should normally be a number greater than or equal to 0, but rearrange() also
allows for tol = NULL which means that columns are rearranged until each col-
umn is oppositely ordered to the sum of all other columns.

tol.type character string indicating the type of convergence tolerance function to be
used ("relative" for relative tolerance and "absolute" for absolute toler-
ance).

n.lookback number of rearrangements to look back for deciding about numerical conver-
gence. Use this option with care.

max.ra maximal number of (considered) column rearrangements of the underlying ma-
trix of quantiles (can be set to Inf).

method character string indicating whether bounds for the worst/best VaR or the best
ES should be computed. These bounds are termed sN and sN in the literature
(and below) and are theoretically not guaranteed bounds of worst/best VaR or



52 VaR_ES_bounds_rearrange

best ES; however, they are treated as such in practice and are typically in line
with results from VaR_bounds_hom() in the homogeneous case, for example.

sample logical indicating whether each column of the two underlying matrices of
quantiles (see Step 3 of the Rearrangement Algorithm in Embrechts et al. (2013))
are randomly permuted before the rearrangements begin. This typically has
quite a positive effect on run time (as most of the time is spent (oppositely)
ordering columns (for rearrange()) or blocks (for block_rearrange())).

is.sorted logical indicating whether the columns of X are sorted in increasing order.

trace logical indicating whether the underlying matrix is printed after each rear-
rangement step. See vignette("VaR_bounds", package = "qrmtools") for
how to interpret the output.

level confidence level α for VaR and ES (e.g., 0.99).

qF d-list containing the marginal quantile functions.

N number of discretization points.

abstol absolute convergence tolerance ϵ to determine the individual convergence, i.e.,
the change in the computed minimal row sums (for method = "worst.VaR")
or maximal row sums (for method = "best.VaR") or expected shortfalls (for
method = "best.ES") for the lower bound sN and the upper bound sN . abstol
is typically ≥ 0; it can also be NULL, see tol above.

N.exp exponents of the number of discretization points (a vector) over which the algo-
rithm iterates to find the smallest number of discretization points for which the
desired accuracy (specified by abstol and reltol) is attained; for each number
of discretization points, at most max.ra-many column rearrangements are of the
underlying matrix of quantiles are considered.

reltol vector of length two containing the individual (first component; used to de-
termine convergence of the minimal row sums (for method = "worst.VaR")
or maximal row sums (for method = "best.VaR") or expected shortfalls (for
method = "best.ES") for sN and sN ) and the joint (second component; relative
tolerance between the computed sN and sN with respect to sN ) relative con-
vergence tolerances. reltol can also be of length one in which case it denotes
the joint relative tolerance; the individual relative tolerance is taken as NULL (see
tol above) in this case.

absreltol vector of length two containing the individual (first component; used to de-
termine convergence of the minimal row sums (for method = "worst.VaR")
or maximal row sums (for method = "best.VaR") or expected shortfalls (for
method = "best.ES") for sN and sN ) absolute and the joint (second compo-
nent; relative tolerance between the computed sN and sN with respect to sN )
relative convergence tolerances. absreltol can also be of length one in which
case it denotes the joint relative tolerance; the individual absolute tolerance is
taken as 0 in this case.

... additional arguments passed to the underlying optimization function. Currently,
this is only used if method = "best.ES" in which case the required confidence
level α must be provided as argument level.
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Details

rearrange() is an auxiliary function (workhorse). It is called by RA() and ARA(). After a column
rearrangement of X, the tolerance between the minimal row sum (for the worst VaR) or maximal
row sum (for the best VaR) or expected shortfall (obtained from the row sums; for the best ES)
after this rearrangement and the one of n.lookback rearrangement steps before is computed and
convergence determined. For performance reasons, no input checking is done for rearrange() and
it can change in future versions to (futher) improve run time. Overall it should only be used by
experts.

block_rearrange(), the workhorse underlying ABRA(), is similar to rearrange() in that it checks
whether convergence has occurred after every rearrangement by comparing the change to the row
sum variance from n.lookback rearrangement steps back. block_rearrange() differs from rearrange
in the following ways. First, instead of single columns, whole (randomly chosen) blocks (two at
a time) are chosen and oppositely ordered. Since some of the ideas for improving the speed of
rearrange() do not carry over to block_rearrange(), the latter should in general not be as fast
as the former. Second, instead of using minimal or maximal row sums or expected shortfall to de-
termine numerical convergence, block_rearrange() uses the variance of the vector of row sums
to determine numerical convergence. By default, it targets a variance of 0 (which is also why the
default tol.type is "absolute").

For the Rearrangement Algorithm RA(), convergence of sN and sN is determined if the minimal
row sum (for the worst VaR) or maximal row sum (for the best VaR) or expected shortfall (obtained
from the row sums; for the best ES) satisfies the specified abstol (so ≤ ϵ) after at most max.ra-
many column rearrangements. This is different from Embrechts et al. (2013) who use < ϵ and only
check for convergence after an iteration through all columns of the underlying matrix of quantiles
has been completed.

For the Adaptive Rearrangement Algorithm ARA() and the Adaptive Block Rearrangement Algo-
rithm ABRA(), convergence of sN and sN is determined if, after at most max.ra-many column
rearrangements, the (the individual relative tolerance) reltol[1] is satisfied and the relative (joint)
tolerance between both bounds is at most reltol[2].

Note that RA(), ARA() and ABRA() need to evalute the 0-quantile (for the lower bound for the
best VaR) and the 1-quantile (for the upper bound for the worst VaR). As the algorithms, due to
performance reasons, can only handle finite values, the 0-quantile and the 1-quantile need to be
adjusted if infinite. Instead of the 0-quantile, the α/(2N)-quantile is computed and instead of the
1-quantile the α + (1 − α)(1 − 1/(2N))-quantile is computed for such margins (if the 0-quantile
or the 1-quantile is finite, no adjustment is made).

rearrange(), block_rearrange(), RA(), ARA() and ABRA() compute sN and sN which are, from
a practical point of view, treated as bounds for the worst (i.e., largest) or the best (i.e., smallest) VaR
or the best (i.e., smallest ES), but which are not known to be such bounds from a theoretical point of
view; see also above. Calling them “bounds” for worst/best VaR or best ES is thus theoretically not
correct (unless proven) but “practical”. The literature thus speaks of (sN , sN ) as the rearrangement
gap.

Value

rearrange() and block_rearrange() return a list containing

bound: computed sN or sN .
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tol: reached tolerance (i.e., the (absolute or relative) change of the minimal row sum (for method
= "worst.VaR") or maximal row sum (for method = "best.VaR") or expected shortfall (for
method = "best.ES") after the last rearrangement).

converged: logical indicating whether the desired (absolute or relative) tolerance tol has been
reached.

opt.row.sums: vector containing the computed optima (minima for method = "worst.VaR"; max-
ima for method = "best.VaR"; expected shortfalls for method = "best.ES") for the row sums
after each (considered) rearrangement.

X.rearranged: (N, d)-matrix containing the rearranged X.

X.rearranged.opt.row: vector containing the row of X.rearranged which leads to the final
optimal sum. If there is more than one such row, the columnwise averaged row is returned.

RA() returns a list containing

bounds: bivariate vector containing the computed sN and sN (the so-called rearrangement range)
which are typically treated as bounds for worst/best VaR or best ES; see also above.

rel.ra.gap: reached relative tolerance (also known as relative rearrangement gap) between sN
and sN computed with respect to sN .

ind.abs.tol: bivariate vector containing the reached individual absolute tolerances (i.e., the ab-
solute change of the minimal row sums (for method = "worst.VaR") or maximal row sums
(for method = "best.VaR") or expected shortfalls (for mehtod = "best.ES") for computing
sN and sN ; see also tol returned by rearrange() above).

converged: bivariate logical vector indicating convergence of the computed sN and sN (i.e.,
whether the desired tolerances were reached).

num.ra: bivariate vector containing the number of column rearrangments of the underlying matri-
ces of quantiles for sN and sN .

opt.row.sums: list of length two containing the computed optima (minima for method = "worst.VaR";
maxima for method = "best.VaR"; expected shortfalls for method = "best.ES") for the row
sums after each (considered) column rearrangement for the computed sN and sN ; see also
rearrange().

X: initially constructed (N, d)-matrices of quantiles for computing sN and sN .

X.rearranged: rearranged matrices X for sN and sN .

X.rearranged.opt.row: rows corresponding to optimal row sum (see X.rearranged.opt.row
as returned by rearrange()) for sN and sN .

ARA() and ABRA() return a list containing

bounds: see RA().

rel.ra.gap: see RA().

tol: trivariate vector containing the reached individual (relative for ARA(); absolute for ABRA())
tolerances and the reached joint relative tolerance (computed with respect to sN ).

converged: trivariate logical vector indicating individual convergence of the computed sN (first
entry) and sN (second entry) and indicating joint convergence of the two bounds according to
the attained joint relative tolerance (third entry).

N.used: actual N used for computing the (final) sN and sN .
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num.ra: see RA(); computed for N.used.

opt.row.sums: see RA(); computed for N.used.

X: see RA(); computed for N.used.

X.rearranged: see RA(); computed for N.used.

X.rearranged.opt.row: see RA(); computed for N.used.

Author(s)

Marius Hofert

References

Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An Academic
Response to Basel 3.5. Risks 2(1), 25–48.

Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation.
Journal of Banking & Finance 37, 2750–2764.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Hofert, M., Memartoluie, A., Saunders, D. and Wirjanto, T. (2017). Improved Algorithms for
Computing Worst Value-at-Risk. Statistics & Risk Modeling or, for an earlier version, https:
//arxiv.org/abs/1505.02281.

Bernard, C., Rüschendorf, L. and Vanduffel, S. (2013). Value-at-Risk bounds with variance con-
straints. See https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2342068.

Bernard, C. and McLeish, D. (2014). Algorithms for Finding Copulas Minimizing Convex Func-
tions of Sums. See https://arxiv.org/abs/1502.02130v3.

See Also

VaR_bounds_hom() for an “analytical” approach for computing best and worst Value-at-Risk in the
homogeneous casse.

vignette("VaR_bounds", package = "qrmtools") for more example calls, numerical challenges
encoutered and a comparison of the different methods for computing the worst (i.e., largest) Value-
at-Risk.

Examples

### 1 Reproducing selected examples of McNeil et al. (2015; Table 8.1) #########

## Setup
alpha <- 0.95
d <- 8
theta <- 3
qF <- rep(list(function(p) qPar(p, shape = theta)), d)

## Worst VaR
N <- 5e4
set.seed(271)

https://arxiv.org/abs/1505.02281
https://arxiv.org/abs/1505.02281
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2342068
https://arxiv.org/abs/1502.02130v3
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system.time(RA.worst.VaR <- RA(alpha, qF = qF, N = N, method = "worst.VaR"))
RA.worst.VaR$bounds
stopifnot(RA.worst.VaR$converged,

all.equal(RA.worst.VaR$bounds[["low"]],
RA.worst.VaR$bounds[["up"]], tol = 1e-4))

## Best VaR
N <- 5e4
set.seed(271)
system.time(RA.best.VaR <- RA(alpha, qF = qF, N = N, method = "best.VaR"))
RA.best.VaR$bounds
stopifnot(RA.best.VaR$converged,

all.equal(RA.best.VaR$bounds[["low"]],
RA.best.VaR$bounds[["up"]], tol = 1e-4))

## Best ES
N <- 5e4 # actually, we need a (much larger) N here (but that's time consuming)
set.seed(271)
system.time(RA.best.ES <- RA(alpha, qF = qF, N = N, method = "best.ES"))
RA.best.ES$bounds
stopifnot(RA.best.ES$converged,

all.equal(RA.best.ES$bounds[["low"]],
RA.best.ES$bounds[["up"]], tol = 5e-1))

### 2 More Pareto examples (d = 2, d = 8; hom./inhom. case; explicit/RA/ARA) ###

alpha <- 0.99 # VaR confidence level
th <- 2 # Pareto parameter theta
qF <- function(p, theta = th) qPar(p, shape = theta) # Pareto quantile function
pF <- function(q, theta = th) pPar(q, shape = theta) # Pareto distribution function

### 2.1 The case d = 2 #########################################################

d <- 2 # dimension

## ``Analytical''
VaRbounds <- VaR_bounds_hom(alpha, d = d, qF = qF) # (best VaR, worst VaR)

## Adaptive Rearrangement Algorithm (ARA)
set.seed(271) # set seed (for reproducibility)
ARAbest <- ARA(alpha, qF = rep(list(qF), d), method = "best.VaR")
ARAworst <- ARA(alpha, qF = rep(list(qF), d))

## Rearrangement Algorithm (RA) with N as in ARA()
RAbest <- RA(alpha, qF = rep(list(qF), d), N = ARAbest$N.used, method = "best.VaR")
RAworst <- RA(alpha, qF = rep(list(qF), d), N = ARAworst$N.used)

## Compare
stopifnot(all.equal(c(ARAbest$bounds[1], ARAbest$bounds[2],

RAbest$bounds[1], RAbest$bounds[2]),
rep(VaRbounds[1], 4), tolerance = 0.004, check.names = FALSE))
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stopifnot(all.equal(c(ARAworst$bounds[1], ARAworst$bounds[2],
RAworst$bounds[1], RAworst$bounds[2]),

rep(VaRbounds[2], 4), tolerance = 0.003, check.names = FALSE))

### 2.2 The case d = 8 #########################################################

d <- 8 # dimension

## ``Analytical''
I <- crude_VaR_bounds(alpha, qF = qF, d = d) # crude bound
VaR.W <- VaR_bounds_hom(alpha, d = d, method = "Wang", qF = qF)
VaR.W.Par <- VaR_bounds_hom(alpha, d = d, method = "Wang.Par", shape = th)
VaR.dual <- VaR_bounds_hom(alpha, d = d, method = "dual", interval = I, pF = pF)

## Adaptive Rearrangement Algorithm (ARA) (with different relative tolerances)
set.seed(271) # set seed (for reproducibility)
ARAbest <- ARA(alpha, qF = rep(list(qF), d), reltol = c(0.001, 0.01), method = "best.VaR")
ARAworst <- ARA(alpha, qF = rep(list(qF), d), reltol = c(0.001, 0.01))

## Rearrangement Algorithm (RA) with N as in ARA and abstol (roughly) chosen as in ARA
RAbest <- RA(alpha, qF = rep(list(qF), d), N = ARAbest$N.used,

abstol = mean(tail(abs(diff(ARAbest$opt.row.sums$low)), n = 1),
tail(abs(diff(ARAbest$opt.row.sums$up)), n = 1)),

method = "best.VaR")
RAworst <- RA(alpha, qF = rep(list(qF), d), N = ARAworst$N.used,

abstol = mean(tail(abs(diff(ARAworst$opt.row.sums$low)), n = 1),
tail(abs(diff(ARAworst$opt.row.sums$up)), n = 1)))

## Compare
stopifnot(all.equal(c(VaR.W[1], ARAbest$bounds, RAbest$bounds),

rep(VaR.W.Par[1],5), tolerance = 0.004, check.names = FALSE))
stopifnot(all.equal(c(VaR.W[2], VaR.dual[2], ARAworst$bounds, RAworst$bounds),

rep(VaR.W.Par[2],6), tolerance = 0.003, check.names = FALSE))

## Using (some of) the additional results computed by (A)RA()
xlim <- c(1, max(sapply(RAworst$opt.row.sums, length)))
ylim <- range(RAworst$opt.row.sums)
plot(RAworst$opt.row.sums[[2]], type = "l", xlim = xlim, ylim = ylim,

xlab = "Number or rearranged columns",
ylab = paste0("Minimal row sum per rearranged column"),
main = substitute("Worst VaR minimal row sums ("*alpha==a.*","~d==d.*" and Par("*

th.*"))", list(a. = alpha, d. = d, th. = th)))
lines(1:length(RAworst$opt.row.sums[[1]]), RAworst$opt.row.sums[[1]], col = "royalblue3")
legend("bottomright", bty = "n", lty = rep(1,2),

col = c("black", "royalblue3"), legend = c("upper bound", "lower bound"))
## => One should use ARA() instead of RA()

### 3 "Reproducing" examples from Embrechts et al. (2013) ######################

### 3.1 "Reproducing" Table 1 (but seed and eps are unknown) ###################
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## Left-hand side of Table 1
N <- 50
d <- 3
qPar <- rep(list(qF), d)
p <- alpha + (1-alpha)*(0:(N-1))/N # for 'worst' (= largest) VaR
X <- sapply(qPar, function(qF) qF(p))
cbind(X, rowSums(X))

## Right-hand side of Table 1
set.seed(271)
res <- RA(alpha, qF = qPar, N = N)
row.sum <- rowSums(res$X.rearranged$low)
cbind(res$X.rearranged$low, row.sum)[order(row.sum),]

### 3.2 "Reproducing" Table 3 for alpha = 0.99 #################################

## Note: The seed for obtaining the exact results as in Table 3 is unknown
N <- 2e4 # we use a smaller N here to save run time
eps <- 0.1 # absolute tolerance
xi <- c(1.19, 1.17, 1.01, 1.39, 1.23, 1.22, 0.85, 0.98)
beta <- c(774, 254, 233, 412, 107, 243, 314, 124)
qF.lst <- lapply(1:8, function(j){ function(p) qGPD(p, shape = xi[j], scale = beta[j])})
set.seed(271)
res.best <- RA(0.99, qF = qF.lst, N = N, abstol = eps, method = "best.VaR")
print(format(res.best$bounds, scientific = TRUE), quote = FALSE) # close to first value of 1st row
res.worst <- RA(0.99, qF = qF.lst, N = N, abstol = eps)
print(format(res.worst$bounds, scientific = TRUE), quote = FALSE) # close to last value of 1st row

### 4 Further checks ###########################################################

## Calling the workhorses directly
set.seed(271)
ra <- rearrange(X)
bra <- block_rearrange(X)
stopifnot(ra$converged, bra$converged,

all.equal(ra$bound, bra$bound, tolerance = 6e-3))

## Checking ABRA against ARA
set.seed(271)
ara <- ARA (alpha, qF = qPar)
abra <- ABRA(alpha, qF = qPar)
stopifnot(ara$converged, abra$converged,

all.equal(ara$bound[["low"]], abra$bound[["low"]], tolerance = 2e-3),
all.equal(ara$bound[["up"]], abra$bound[["up"]], tolerance = 6e-3))
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